Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Peculiarities of ZnSxSe1-x:Mn, Nanocrystals Obtained by Combustion Synthesis

https://doi.org/10.21869/2223-1528-2022-12-1-190-207

Abstract

Purpose. Determination of the dimensional characteristics, phase and chemical composition of ZnSxSe1-x nanocrystals with a parameter step x = 0.2, obtained by the combustion synthesis.

Methods. Characterization of ZnSxSe1-x nanocrystals using scanning microscopy, X-ray diffraction analysis and EPR spectroscopy obtained by the combustion synthesis.

Results. We determined the crystal lattice parameters of the synthesized ZnSxSe1-x:Mn nanocrystals, which were ranged from a = 5.386 Å (для х = 1) to a = 5.633 Å (для х = 0). We determined the sizes of the synthesized ZnSxSe1-x:Mn nanocrystals, which were ranged ranged from 50±5 nm to 80±5 nm. The dependences of the loaded charge before synthesis and the powder obtained after synthesis, microstresses and sizes of nanocrystals depending on the parameter x, fractions of cubic and hexagonal phases depending on the parameter of composition x, half-widths of narrow and wide lines of the EPR spectrum on parameter x, the resonant value of the magnetic field of the broad absorption line due to Mn2+ ions and the constant A of the hyperfine structure of the EPR spectra of Mn2+ ions on the parameter x are plotted.

Conclusion. The obtained nanocrystals are characterized by a high perfection of the crystal structure. The change in the studied dependences for ZnS0.4Se0.6:Mn nanocrystals and upon transition from ZnS0.2Se0.4:Mn nanocrystals to ZnS0.4Se0.6:Mn nanocrystals can be explained by the smallest size of ZnS0.4Se0.6:Mn nanocrystals, the simultaneous presence of almost the same amount of S and Se in the solid solution, and an increase in the role of surface phenomena at the nanocrystal boundary.

About the Authors

E. G. Plakhtii
Belgorod State National Research University
Russian Federation

Evgenii G. Plakhtii, Applicante of the Department of Theoretical and Experimental Physics  of the Institute of Engineering and Digital  Technologies

85 Pobeda str., Belgorod 308015



V. S. Zakhvalinsky
Belgorod State National Research University
Russian Federation

Vasily S. Zakhvalinsky, Dr. of Sci. (Physics and Mathematics), Professor, Professor  of the Department of Theoretical and  Experimental Physics of the Institute  of Engineering and Digital Technologies

85 Pobeda str., Belgorod 308015



A. A. Trubaev
Belgorod State National Research University
Russian Federation

Aleksei A. Trubaev, Post-Graduate Student  of the Department of Theoretical and  Experimental Physics of the Institute  of Engineering and Digital Technologies

85 Pobeda str., Belgorod 308015



I. M. Golev
Air Force, Air Force Academy named after Professor N. E. Zhukovsky and Yu. A. Gagarin
Russian Federation

Igor M. Golev, Dr. of Sci. (Physics and Mathematics), Professor, Professor of the Department of Physics and Chemistry Military Educational and Scientific Center

54a Starykh Bolshevikov str., Voronezh 394064



References

1. Sadekar H. K., Ghule A. V., Sharma R. Bandgap engineering by substitution of S by Se in nanostructured ZnS1–xSex thin films grown by soft chemical route for nontoxic optoelectronic device applications. Journal of Alloys and Compounds, 2011, vol. 509, no. 18, P. 5525–5531. https://doi.org/10.1016/j.jallcom.2011.02.089

2. Lu J., Liu H., Sun C., Zheng M., Nripan M., Chen G. S., Subodh G. M., Zhang X., Sow C. H. Optical and electrical applications of ZnSxSe1–x nanowires-network with uniform and controllable stoichiometry. Nanoscale, 2012, vol. 4, no. 3, pp. 976–981. https://doi.org/ 10.1039/C2NR11459C

3. Chen D., Wang A., Buntine M. A., Jia G. Recent advances in zinc‐containing colloidal semiconductor nanocrystals for optoelectronic and energy conversion applications. ChemElectroChem, 2019, vol. 6, no. 18, pp. 4709–4724. https://doi.org/10.1002/celc.201900838

4. Chukavin A. I., Valeev R. G., Beltiukov A. N. Observation of excitons at room temperature in ZnSxSe1–x nanostructures embedded in a porous Al2O3 template. Materials Chemistry and Physics, 2019, vol. 235, p. 121748. https://doi.org/10.1016/j.matchemphys. 2019.121748

5. Avilés M. A., Gotor F. J. Tuning the excitation wavelength of luminescent Mn2+-doped ZnSxSe1–x obtained by mechanically induced self-sustaining reaction. Optical Materials, 2021, vol. 117, p. 111121. https://doi.org/10.1016/j.optmat.2021.111121

6. Xu X., Li S., Chen J., Cai S., Long Z., Fang X. Design principles and material engineering of ZnS for optoelectronic devices and catalysis. Advanced Functional Materials, 2018, vol. 28, no. 36, p. 1802029. https://doi.org/10.1002/adfm.201802029

7. Zakhvalinskii V. S., Nguyen Thi Tham Hong, Pilyuk E. A., Emelaynov V. M. Sintez i issledovanie elektroprovodnosti materialov solnechnoi energetiki Cu2SnS3 i Cu2ZnSnS4 [Synthesis and study of electrical conductivity properties of solar energy materials Cu2SnS3 and Cu2ZnSnS4]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2020, vol. 10, no. 2, pp. 58–66.

8. Rogachev A. S., Mukasyan A. S. Combustion for material synthesis. CRC Press Taylor & Francis Group, 2015. 398 p.

9. Levashov E. A., Mukasyan A. S., Rogachev A. S., Shtansky D. V. Self-propagating high-temperature synthesis of advanced materials and coatings. International materials reviews, 2017, vol. 62, no. 4, pp. 203–239. https://doi.org/10.1080/09506608.2016.1243291

10. Kozitskii S. V., Pisarskii V. P., Ulanova O. O. Structure and phase composition of zinc sulfide produced by self-propagating high-temperature synthesis. Combustion, Explosion and Shock Waves, 1998, vol. 34, no. 1, pp. 34–39. https://doi.org/10.1007/BF02671814

11. Markov A. A., Filimonov I. A., Poletaev A. V., Vadchenko S. G., Martirosyan K. S. Generation of charge carriers during combustion synthesis of sulfides. International Journal of Self-Propagating High-Temperature Synthesis, 2013, vol. 22, no. 2, pp. 69–76. https://doi.org/10.3103/S1061386213020052

12. Bacherikov Y. Y., Baran N. P., Vorona I. P., Gilchuk A. V., Zhuk A. G., Polishchuk Y. O., Korsunska N. E. Structural and optical properties of ZnS:Mn micro-powders, synthesized from the charge with a different Zn/S ratio. Journal of Materials Science: Materials in Electronics, 2017, vol. 28, no. 12, P. 8569-8578. https://doi.org/10.1007/s10854017-6580-8

13. Liu G., Yuan X., Li J., Chen K., Li Y., Li L. Combustion synthesis of ZnSe with strong red emission. Materials & Design, 2016, vol. 97, pp. 33–44. https://doi.org/10.1016/ j.matdes.2016.02.063

14. Tian Z., Chen Z., Yuan X., Cui W., Zhang J., Sun S., Liu G. Preparation of ZnSe powder by vapor reaction during combustion synthesis. Ceramics International, 2019, vol. 45, no. 14, pp. 18135–18139. https://doi.org/10.1016/j.ceramint.2019.05.321

15. Kovalenko А. V., Plakhtii Y. G., Khmelenko О. V. The peculiarities of the properties of ZnSxSe1–x nanocrystals obtained by self-propagating high-temperature synthesis. Functional materials, 2018, vol. 4, p. 665. https://doi.org/10.15407/fm25.04.665

16. Kovalenko A. V., Plakhtii Y. G., Khmelenko О. V. Research of Photoluminescence spectra of ZnSxSe1–x:Mn nanocrystals obtained by method of self-propagation high-temperature synthesis. Journal of nano- and electronic physics, 2019, vol. 11, no. 4, pp. 04031-1–04031-5. https://doi.org/10.21272/jnep.11(4).04031

17. Merzhanov A. G., Borovinskaya I. P. Historical retrospective of SHS: An autoreview. International Journal of Self-Propagating High-Temperature Synthesis, 2008, vol. 17, no. 4, pp. 242–265. https://doi.org/10.3103/S1061386208040079

18. Amosov A. P., Borovinskaya I. P., Merzhanov A. G. Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov [Powder technology of self-propagating high-temperature synthesis of materials]. Moscow, Mashinostroenie1 Publ., 2007. 567 p.

19. Bacherikov Y. Y., Gilchuk A. V., Zhuk A. G., Kurichka R. V., Okhrimenko O. B., Zelensky S. E., Kravchenko S. A. Nonmonotonic behavior of luminescence characteristics of fine-dispersed self-propagating high-temperature synthesized ZnS: Mn depending on size of its particles. Journal of Luminescence, 2018, vol. 194, pp. 8–14. https://doi.org/10.1016/j.jlumin.2017.09.010

20. Bulaniy M. F., Kovalenko A. V., Morozov A. S., Khmelenko O. V. Obtaining of nanocrystals ZnS:Mn by means of self-propagating high-temperature synthesis. Journal of Nano- and Electronic Physics, 2017, vol. 9, no. 2, p. 2007-1. https://doi.org/10.21272/jnep.9(2).02007

21. Amosov A. P., Borovinskaya I. P., Merzhanov A. G., Sychev A. Ye. Priyemy regulirovaniya dispersnoy struktury SVS-poroshkov: ot monokristal'nykh zeren do nanorazmernykh chastits [Methods for controlling the disperse structure of SHS powders: from single-crystal grains to nanosized particles]. Izvestiya vysshikh uchebnykh zavedeniy. Tsvetnaya metallurgiya = Proceedings of Higher Educational Institutions. Non-ferrous metallurgy, 2006, no. 5, pp. 9–22.

22. Chuo H. X,. Wang T. Y., Zhang W. G. Optical properties of ZnSxSe1–x alloy nanostructures and their photodetectors. Journal of alloys and compounds, 2014, vol. 606, pp. 231–235. https://doi.org/10.1016/j.jallcom.2014.04.004

23. Waseda Y., Matsubara E., Shinoda K. X-ray diffraction crystallography: introduction, examples and solved problems. Springer Science & Business Media, 2011. 310 p.

24. Taguchi T., Kawakami Y., Yamada Y. Interface properties and the effect of strain of ZnSe/ZnS strained-layer superlattices. Physica B: Condensed Matter., 1993, vol. 191, no. 12, pp. 23–44. https://doi.org/10.1016/0921-4526(93)90176-7

25. Dorofeev G. A., Streletskii A. N., Povstugar I. V., Protasov A. V., Elsukov E. P. Determination of nanoparticle sizes by X-ray diffraction. Colloid Journal, 2012, Vol. 74, no. 6, pp. 675–685. https://doi.org/10.1134/S1061933X12060051

26. Nien Y. T., Chen I. G., Hwang C. S., Chu S. Y. Microstructure and electroluminescence of ZnS: Cu, Cl phosphor powders prepared by firing with CuS nanocrystallites. Journal of electroceramics, 2006, vol. 17, no. 2, pp. 299–303. https://doi.org/10.1007/s10832-006-8913-5

27. HajyAkbary F., Sietsma J., Böttger A. J., Santofimia M. J. An improved X-ray diffraction analysis method to characterize dislocation density in lath martensitic structures. Materials Science and Engineering: A, 2015, vol. 639, p. 208–218. https://doi.org/10.1016/j.msea.2015.05.003

28. Shumskaya A. E., Kozlovskiy A. L., Zdorovets M. V., Evstigneeva S. A., Trukhanov A. V., Trukhanov S. V., Panina L. V. Correlation between structural and magnetic properties of FeNi nanotubes with different lengths. Journal of Alloys and Compounds, 2019, vol. 810, p. 151874. https://doi.org/10.1016/j.jallcom.2019.151874

29. Bacherikov Y. Y., Vorona I. P., Okhrimenko O. B., Kladko V. P., Zhuk A. G., Okulov S. M., Kidalov V. V. Manganese clusterization in ZnS:Mn, Mg synthesized by self-pro- pagating high-temperature synthesis. Semiconductors, 2020, vol. 54, no. 3, pp. 330–336. https://doi.org/10.1134/S1063782620030033

30. Yeom T. H., Lee Y. H., Hahn T. S., Oh M. H., Choh S. H. Electron‐paramagneticresonance study of the Mn2+ luminescence center in ZnS: Mn powder and thin films. Journal of applied physics, 1996, vol. 79, no. 2, pp. 1004–1007. https://doi.org/10.1063/1.360886

31. Biswas S., Kar S., Chaudhuri S. Optical and magnetic properties of manganese-incorporated zinc sulfide nanorods synthesized by a solvothermal process. The Journal of Physical Chemistry B, 2005, vol. 109, no. 37, pp. 17526–17530. https://doi.org/10.1021/jp053138i

32. Cherepanov D., Kostrov A., Gostev F., Shelaev I., Motyakin M., Kochev S., Nadtochenko V. Ultrafast quenching of excitons in the ZnxCd1–xS/ZnS quantum dots doped with Mn2+ through charge transfer intermediates results in manganese luminescence. Nanomaterials, 2021, vol. 11, no. 11, P. 3007. https://doi.org/10.3390/nano11113007

33. Kennedy T. A., Glaser E. R., Klein P. B., Bhargava R. N. Symmetry and electronic structure of the Mn impurity in ZnS nanocrystals. Physical review B, 1995, vol. 52, no. 20, p. R14356. https://doi.org/10.1103/PhysRevB.52.R14356

34. VS G. K., Mahesha M. G. XPS analysis of ZnS0.4Se0.6 thin films deposited by spray pyrolysis technique. Journal of Electron Spectroscopy and Related Phenomena, 2021, vol. 249, p. 147072. https://doi.org/10.1016/j.elspec.2021.147072

35. VS G. K., Mahesha M. G. Characterization of spray deposited ternary ZnSxSe1–x thin films for solar cell buffers. Surfaces and interfaces, 2020, vol. 20, p. 100509. https://doi.org/10.1016/j.surfin.2020.100509


Review

For citations:


Plakhtii E.G., Zakhvalinsky V.S., Trubaev A.A., Golev I.M. Peculiarities of ZnSxSe1-x:Mn, Nanocrystals Obtained by Combustion Synthesis. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(1):190-207. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-1-190-207

Views: 108


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)