Investigation of the Role of Impurity Boron Atoms in the Metallization of Carbon Nanotubes
https://doi.org/10.21869/2223-1528-2022-12-1-159-173
Abstract
Purpose – is devoted to the study of the possibility of controlling various effects, including metallization, of carbon nanotubes using impurity boron atoms. The existing methods of carrying out substitution reactions in nanotubes of a part of carbon atoms for boron are considered.
Methods. To analyze the current state of research on the subject, international and domestic studies in the field of modification and metallization of carbon nanotubes were compared. In order to clarify the mechanisms of metallization and determine the dependence of this process on the concentration of impurity boron atoms, the results of model experiments conducted using the density functional theory (DFT) were used.
Results. As a result of the conducted research, it was found that the modification of carbon nanotubes with atomic boron is one of the most effective ways to control the physico-chemical properties of the studied nanoobjects. It was also found that the introduction of impurity boron atoms leads to the localization of adsorption centers near them. During the model experiment, it was also found that the electron density is redistributed in the system from metal atoms to the surface of the nanotube.
Conclusion. The totality of the described phenomena allows us to conclude that with the help of impurity boron atoms, it is possible not only to control the metallization process of carbon nanotubes, but also those electronic properties that will be important for their further use as nodes of nanoelectronic devices.
About the Author
S. V. BorozninRussian Federation
Sergey V. Boroznin, Cand. of Sci. (Physics and Mathematics), Associate Professor, Head of the Department of Forensic Examination and Physical Materials Science, Institute of Priority Technologies
100 Universitetskii Prospect, Volgograd 400062
Researcher ID: F-1124-2014
References
1. Rathinavel S., Priyadharshini K., Panda D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application // Materials Science and Engineering: B. 2021. Vol. 268. P. 115095. https://doi.org/10.1016/j.mseb.2021.115095
2. Boron doped carbon nanotubes: synthesis, characterization and emerging applications: a review / S. V. Sawant, A. W. Patwardhan, J. B. Joshi, K. Dasgupta // Chemical Engineering Journal. 2022. Vol. 427. P. 131616. https://doi.org/10.1016/j.cej.2021.131616
3. Keru G., Ndungu P. G., Nyamori V. O. Effect of boron concentration on physicochemical properties of boron-doped carbon nanotubes // Mater. Chem. Phys. 2015. Vol. 153. P. 323–332. https://doi.org/10.1016/J.MATCHEMPHYS.2015.01.020
4. Hydrothermal synthesis of boron-doped unzipped carbon nanotubes/sulfur composite for high-performance lithium-sulfur batteries / C. Xu, H. Zhou, C. Fu, Y. Huang, L. Chen, L. Yang, Y. Kuang // Electrochim. Acta. 2017. Vol. 232. 156–163. https://doi.org/10.1016/J.ELECTACTA.2017.02.140
5. Rapidly self-heating shape memory polyurethane nanocomposite with boron-doped single-walled carbon nanotubes using near-infrared laser / Y.-M. Ha, Y.-O. Kim, Y.-N. Kim, J. Kim, J.-S. Lee, J. W. Cho, M. Endo, H. Muramatsu, Y. A. Kim, Y. C. Jung // Compos. Part B Eng. 2019. Vol. 175. P. 107065. https://doi.org/10.1016/J.COMPOSITESB.2019.107065
6. Boron-doped multi- walled carbon nanotubes as sensing material for analysis of dopamine and epinephrine in presence of uric acid / N. G. Tsierkezos, U. Ritter, Y. N. Thaha, A. Knauer, D. Fernandes, A. Kelarakis, E. K. McCarthy // Chem. Phys. Lett. 2018. Vol. 710. P. 157–167. https://doi.org/10.1016/J.CPLETT.2018.09.007
7. Boron-doped graphene for electrocatalytic N2 reduction / Y. Xiaomin, H. Peng, W. Zengxi, H. Linsong, G. Zhengxiang, P. Sijia, M. Jianmin, Z. Gengfeng // Joule. 2018. Vol. 2, No. 8. P. 1610–1622. https://doi.org/10.1016/J.JOULE.2018.06.007
8. Rezania H. The effect of boron doping on the thermal conductivity of zigzag carbon nanotubes // Int. J. Mod. Phys. B. 2015. Vol. 29. P. 1550025. https://doi.org/10.1142/S0217979215500253
9. Kinetic study of boron doped carbon nanotubes synthesized using chemical vapour deposition / A. Sharma, A. Patwardhan, K. Dasgupta, J. B. Joshi // Chem. Eng. Sci. 2019. Vol. 207. P. 1341–1352. https://doi.org/10.1016/J.CES.2019.06.030
10. Boron-doping effects in carbon nanotubes / W. K. Hsu, S. Firth, P. Redlich, M. Terrones, H. Terrones, Y. Q. Zhu, N. Grobert, A. Schilder, R. J. H. Clark, H. W. Krotoa, D. R. M. Waltona // J. Mater. Chem. 2000. Vol. 10. P. 1425–1429. https://doi.org/10.1039/B000720J
11. Structural modification in carbon nanotubes by boron incorporation / M. Baibarac, M. L. Cantu, J. O. Sole, N. C. Pastor, P. G. Romero // Small. 2006. Vol. 2. P. 1075–1082. https://doi.org/10.1002/smll.200600148
12. Outer tube-selectively boron-doped double-walled carbon nanotubes for thermoelectric applications / H. Muramatsu, C.-S. Kang, K. Fujisawa, J. H. Kim, C.-M. Yang, S. Kim, J. H. Hong, Y. A. Kim, T. Hayashi // ACS Appl. Nano Mater. 2020. Vol. 3, No. 4. P. 3347–3354. https://doi.org/10.1021/acsanm.0c00075
13. Effect of boron doping on the electrical conductivity of metallicity-separated single walled carbon nanotubes / K. Fujisawa, T. Hayashi, M. Endo, M. Terrones, J. H. Kim, Y. A. Kim // Nanoscale. 2018. Vol. 10, No. 26. P. 12723–12733. https://doi.org/10.1039/c8nr02323a
14. Controllable boron doping of carbon nanotubes with tunable dopant functionalities: an effective strategy toward carbon materials with enhanced electrical properties / W.-H. Chiang, G.-L. Chen, C.-Y. Hsieh, S.-C. Lo // RSC Adv. 2015. Vol. 5. P. 97579–97588. https://doi.org/10.1039/C5RA20664B
15. Wang Q., Chen L. Q., Annett J. F. Stability and charge transfer of C3B ordered structures // Phys. Rev. B. 1996. Vol. 54. P. R2271. https://doi.org/10.1103/PHYSREVB.54.R2271
16. Field emission properties of boron and nitrogen doped carbon nanotubes / R. B. Sharma, D. J. Late, D. S. Joag, A. Govindaraj, C. N. R. Rao // Chem. Phys. Lett. 2006. Vol. 428. P. 102–108. https://doi.org/10.1016/J.CPLETT.2006.06.089
17. Adsorption of hydrogen on boron-doped graphene: A first-principles prediction / W. Han, Y. Bando, K. Kurashima, T. Sato // Journal of Applied Physics. 1999. Vol. 299. P. 366–368. https://doi.org/10.1063/1.3056380
18. Efficient production of B-substituted single-wall carbon nanotubes / E. BorowiakPalen, T. Pichler, G. G. Fuentes, A. Gra, R. J. Kalenczuk, M. Knupfer, J. Fink // Chem. Phys. Lett. 2003. Vol. 378. P. 516–520. https://doi.org/10.1016/S0009-2614(03)01324-1
19. New synthesis and physical property of low resistivity boron-doped multi-walled carbon nanotubes / S. Ishii, T. Watanabe, S. Ueda, S. Tsuda, T. Yamaguchi, Y. Takano // Physica C. 2008. Vol. 468. P. 1210–1213. https://doi.org/10.1016/j.physc.2008.05.034
20. Synthesis, analysis, and electrical property measurements of compound nanotubes in the B-C-N ceramic system / D. Golberg, Y. Bando, K. Kurashima, T. Sato // Diam. Relat. Mater. 2001. Vol. 10. P. 63–67. https://doi.org/10.1557/MRS2004.15
21. Handuja S., Srivastava P., Van Car V. D. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction // Synth. React. Inorg. Metal. Org. Nano Metal. Chem. 2007. Vol. 37. P. 485–450. https://doi.org/10.1002/anie.201510031
22. Zaporotskova I. V. Uglerodnye i neuglerodnye nanomaterialy i kompozitnye struktury na ikh osnove: stroenie i elektronnye svoistva [Carbon and non-carbon nanomaterials and composite structures based on them: structure and electronic properties]. Volgograd, Volgograd St. Univ. Publ., 2009. 490 p.
23. Redlich P., Loeffler J., Ajayan P.M., Bill J., Aldinger F., Riihle M. B-C-N nanotubes and boron doping of carbon nanotubes. Chem. Phys. Lett., 1996, vol. 260, pp. 465–470. https://doi.org/10.1016/0009-2614(96)00817-2
24. Carroll D. L., Redlich P., Blase X., Charlier J. C., Curran S., Ajayan P. M., Roth S., Rühle M. Effects of nanodomain formation on the electronic structure of doped carbon nanotubes. Phys. Rev. Lett., 1998, vol. 81, pp. 2332–2335. https://doi.org/10.1103/PHYSREVLETT.81.2332
25. Sankaran M., Viswanathan B. Hydrogen storage in boron substituted carbon nanotubes. Carbon, 2007, vol. 45, pp. 1628–1635. https://doi.org/10.1016/J.CARBON.2007.04.011
26. Handuja S., Srivastava P., Vankar V. D. Structural modification in carbon nanotubes by boron incorporation. Nanoscale Research Letters, 2009, vol. 4, no. 8, pp. 789–793. https://doi.org/10.1007/s11671-009-9315-9
27. Boroznin S. V., Zaporotskova I. V., Boroznina N. P., Zhitnikov Z. A. Study of interaction of BCn-type borocarbon nanotubes with alkali metal atoms. AIP Conference Proce- edings, 2020, vol. 2313, p. 030001. https://doi.org/10.1063/5.0033073
28. Boroznin S. V., Polikarpova N. P., Zaporotskov P. A., Zaporotskova I. V. O vzaimodeistvii borouglerodnykh nanotrub s metallami [On the interaction and modification of borocarbon nanotubes with metals]. Fizika volnovykh protsessov i radiotekhnicheskie sistemy = Physics of wave processes and radio engineering systems, 2015, vol. 18, no. 2, pp. 20–24. https://www.elibrary.ru/item.asp?id=24054839
29. Boroznin S. V., Zaporotskova I. V., Streltsova D. V. Investigation of BC5 nanotube interaction with alkaline metal atoms. AIP Conference Proceedings, 2019, vol. 2174, pp. 020011. https://doi.org/10.1063/1.5134162
Review
For citations:
Boroznin S.V. Investigation of the Role of Impurity Boron Atoms in the Metallization of Carbon Nanotubes. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(1):159-173. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-1-159-173