Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Investigation of the Role of Impurity Boron Atoms in the Metallization of Carbon Nanotubes

https://doi.org/10.21869/2223-1528-2022-12-1-159-173

Abstract

Purpose – is devoted to the study of the possibility of controlling various effects, including metallization, of carbon nanotubes using impurity boron atoms. The existing methods of carrying out substitution reactions in nanotubes of a part of carbon atoms for boron are considered. 

Methods. To analyze the current state of research on the subject, international and domestic studies in the field of modification and metallization of carbon nanotubes were compared. In order to clarify the mechanisms of metallization and determine the dependence of this process on the concentration of impurity boron atoms, the results of model experiments conducted using the density functional theory (DFT) were used. 

Results. As a result of the conducted research, it was found that the modification of carbon nanotubes with atomic boron is one of the most effective ways to control the physico-chemical properties of the studied nanoobjects. It was also found that the introduction of impurity boron atoms leads to the localization of adsorption centers near them. During the model experiment, it was also found that the electron density is redistributed in the system from metal atoms to the surface of the nanotube.

Conclusion. The totality of the described phenomena allows us to conclude that with the help of impurity boron atoms, it is possible not only to control the metallization process of carbon nanotubes, but also those electronic properties that will be important for their further use as nodes of nanoelectronic devices.

About the Author

S. V. Boroznin
Volgograd State University
Russian Federation

Sergey V. Boroznin, Cand. of Sci. (Physics  and Mathematics), Associate Professor, Head  of the Department of Forensic Examination  and Physical Materials Science, Institute  of Priority Technologies

100 Universitetskii Prospect, Volgograd 400062

Researcher ID: F-1124-2014



References

1. Rathinavel S., Priyadharshini K., Panda D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application // Materials Science and Engineering: B. 2021. Vol. 268. P. 115095. https://doi.org/10.1016/j.mseb.2021.115095

2. Boron doped carbon nanotubes: synthesis, characterization and emerging applications: a review / S. V. Sawant, A. W. Patwardhan, J. B. Joshi, K. Dasgupta // Chemical Engineering Journal. 2022. Vol. 427. P. 131616. https://doi.org/10.1016/j.cej.2021.131616

3. Keru G., Ndungu P. G., Nyamori V. O. Effect of boron concentration on physicochemical properties of boron-doped carbon nanotubes // Mater. Chem. Phys. 2015. Vol. 153. P. 323–332. https://doi.org/10.1016/J.MATCHEMPHYS.2015.01.020

4. Hydrothermal synthesis of boron-doped unzipped carbon nanotubes/sulfur composite for high-performance lithium-sulfur batteries / C. Xu, H. Zhou, C. Fu, Y. Huang, L. Chen, L. Yang, Y. Kuang // Electrochim. Acta. 2017. Vol. 232. 156–163. https://doi.org/10.1016/J.ELECTACTA.2017.02.140

5. Rapidly self-heating shape memory polyurethane nanocomposite with boron-doped single-walled carbon nanotubes using near-infrared laser / Y.-M. Ha, Y.-O. Kim, Y.-N. Kim, J. Kim, J.-S. Lee, J. W. Cho, M. Endo, H. Muramatsu, Y. A. Kim, Y. C. Jung // Compos. Part B Eng. 2019. Vol. 175. P. 107065. https://doi.org/10.1016/J.COMPOSITESB.2019.107065

6. Boron-doped multi- walled carbon nanotubes as sensing material for analysis of dopamine and epinephrine in presence of uric acid / N. G. Tsierkezos, U. Ritter, Y. N. Thaha, A. Knauer, D. Fernandes, A. Kelarakis, E. K. McCarthy // Chem. Phys. Lett. 2018. Vol. 710. P. 157–167. https://doi.org/10.1016/J.CPLETT.2018.09.007

7. Boron-doped graphene for electrocatalytic N2 reduction / Y. Xiaomin, H. Peng, W. Zengxi, H. Linsong, G. Zhengxiang, P. Sijia, M. Jianmin, Z. Gengfeng // Joule. 2018. Vol. 2, No. 8. P. 1610–1622. https://doi.org/10.1016/J.JOULE.2018.06.007

8. Rezania H. The effect of boron doping on the thermal conductivity of zigzag carbon nanotubes // Int. J. Mod. Phys. B. 2015. Vol. 29. P. 1550025. https://doi.org/10.1142/S0217979215500253

9. Kinetic study of boron doped carbon nanotubes synthesized using chemical vapour deposition / A. Sharma, A. Patwardhan, K. Dasgupta, J. B. Joshi // Chem. Eng. Sci. 2019. Vol. 207. P. 1341–1352. https://doi.org/10.1016/J.CES.2019.06.030

10. Boron-doping effects in carbon nanotubes / W. K. Hsu, S. Firth, P. Redlich, M. Terrones, H. Terrones, Y. Q. Zhu, N. Grobert, A. Schilder, R. J. H. Clark, H. W. Krotoa, D. R. M. Waltona // J. Mater. Chem. 2000. Vol. 10. P. 1425–1429. https://doi.org/10.1039/B000720J

11. Structural modification in carbon nanotubes by boron incorporation / M. Baibarac, M. L. Cantu, J. O. Sole, N. C. Pastor, P. G. Romero // Small. 2006. Vol. 2. P. 1075–1082. https://doi.org/10.1002/smll.200600148

12. Outer tube-selectively boron-doped double-walled carbon nanotubes for thermoelectric applications / H. Muramatsu, C.-S. Kang, K. Fujisawa, J. H. Kim, C.-M. Yang, S. Kim, J. H. Hong, Y. A. Kim, T. Hayashi // ACS Appl. Nano Mater. 2020. Vol. 3, No. 4. P. 3347–3354. https://doi.org/10.1021/acsanm.0c00075

13. Effect of boron doping on the electrical conductivity of metallicity-separated single walled carbon nanotubes / K. Fujisawa, T. Hayashi, M. Endo, M. Terrones, J. H. Kim, Y. A. Kim // Nanoscale. 2018. Vol. 10, No. 26. P. 12723–12733. https://doi.org/10.1039/c8nr02323a

14. Controllable boron doping of carbon nanotubes with tunable dopant functionalities: an effective strategy toward carbon materials with enhanced electrical properties / W.-H. Chiang, G.-L. Chen, C.-Y. Hsieh, S.-C. Lo // RSC Adv. 2015. Vol. 5. P. 97579–97588. https://doi.org/10.1039/C5RA20664B

15. Wang Q., Chen L. Q., Annett J. F. Stability and charge transfer of C3B ordered structures // Phys. Rev. B. 1996. Vol. 54. P. R2271. https://doi.org/10.1103/PHYSREVB.54.R2271

16. Field emission properties of boron and nitrogen doped carbon nanotubes / R. B. Sharma, D. J. Late, D. S. Joag, A. Govindaraj, C. N. R. Rao // Chem. Phys. Lett. 2006. Vol. 428. P. 102–108. https://doi.org/10.1016/J.CPLETT.2006.06.089

17. Adsorption of hydrogen on boron-doped graphene: A first-principles prediction / W. Han, Y. Bando, K. Kurashima, T. Sato // Journal of Applied Physics. 1999. Vol. 299. P. 366–368. https://doi.org/10.1063/1.3056380

18. Efficient production of B-substituted single-wall carbon nanotubes / E. BorowiakPalen, T. Pichler, G. G. Fuentes, A. Gra, R. J. Kalenczuk, M. Knupfer, J. Fink // Chem. Phys. Lett. 2003. Vol. 378. P. 516–520. https://doi.org/10.1016/S0009-2614(03)01324-1

19. New synthesis and physical property of low resistivity boron-doped multi-walled carbon nanotubes / S. Ishii, T. Watanabe, S. Ueda, S. Tsuda, T. Yamaguchi, Y. Takano // Physica C. 2008. Vol. 468. P. 1210–1213. https://doi.org/10.1016/j.physc.2008.05.034

20. Synthesis, analysis, and electrical property measurements of compound nanotubes in the B-C-N ceramic system / D. Golberg, Y. Bando, K. Kurashima, T. Sato // Diam. Relat. Mater. 2001. Vol. 10. P. 63–67. https://doi.org/10.1557/MRS2004.15

21. Handuja S., Srivastava P., Van Car V. D. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction // Synth. React. Inorg. Metal. Org. Nano Metal. Chem. 2007. Vol. 37. P. 485–450. https://doi.org/10.1002/anie.201510031

22. Zaporotskova I. V. Uglerodnye i neuglerodnye nanomaterialy i kompozitnye struktury na ikh osnove: stroenie i elektronnye svoistva [Carbon and non-carbon nanomaterials and composite structures based on them: structure and electronic properties]. Volgograd, Volgograd St. Univ. Publ., 2009. 490 p.

23. Redlich P., Loeffler J., Ajayan P.M., Bill J., Aldinger F., Riihle M. B-C-N nanotubes and boron doping of carbon nanotubes. Chem. Phys. Lett., 1996, vol. 260, pp. 465–470. https://doi.org/10.1016/0009-2614(96)00817-2

24. Carroll D. L., Redlich P., Blase X., Charlier J. C., Curran S., Ajayan P. M., Roth S., Rühle M. Effects of nanodomain formation on the electronic structure of doped carbon nanotubes. Phys. Rev. Lett., 1998, vol. 81, pp. 2332–2335. https://doi.org/10.1103/PHYSREVLETT.81.2332

25. Sankaran M., Viswanathan B. Hydrogen storage in boron substituted carbon nanotubes. Carbon, 2007, vol. 45, pp. 1628–1635. https://doi.org/10.1016/J.CARBON.2007.04.011

26. Handuja S., Srivastava P., Vankar V. D. Structural modification in carbon nanotubes by boron incorporation. Nanoscale Research Letters, 2009, vol. 4, no. 8, pp. 789–793. https://doi.org/10.1007/s11671-009-9315-9

27. Boroznin S. V., Zaporotskova I. V., Boroznina N. P., Zhitnikov Z. A. Study of interaction of BCn-type borocarbon nanotubes with alkali metal atoms. AIP Conference Proce- edings, 2020, vol. 2313, p. 030001. https://doi.org/10.1063/5.0033073

28. Boroznin S. V., Polikarpova N. P., Zaporotskov P. A., Zaporotskova I. V. O vzaimodeistvii borouglerodnykh nanotrub s metallami [On the interaction and modification of borocarbon nanotubes with metals]. Fizika volnovykh protsessov i radiotekhnicheskie sistemy = Physics of wave processes and radio engineering systems, 2015, vol. 18, no. 2, pp. 20–24. https://www.elibrary.ru/item.asp?id=24054839

29. Boroznin S. V., Zaporotskova I. V., Streltsova D. V. Investigation of BC5 nanotube interaction with alkaline metal atoms. AIP Conference Proceedings, 2019, vol. 2174, pp. 020011. https://doi.org/10.1063/1.5134162


Review

For citations:


Boroznin S.V. Investigation of the Role of Impurity Boron Atoms in the Metallization of Carbon Nanotubes. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(1):159-173. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-1-159-173

Views: 168


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)