Generation of Low-Frequency Elastic Waves in Magnetic Fluids
https://doi.org/10.21869/22231528-2022-12-1-146-158
Abstract
The purpose of the study is to analyse the mechanisms of generation of elastic waves in magnetic fluids in a constant magnetic field by applying an alternating magnetic field.
Metods. The theoretical calculation of the dependence of the relative amplitude of the excited oscillations on the strength of the magnetizing field (constant component) is carried out under the assumption of a rigid connection between a magnetic nanoparticle and its magnetic moment (Brownian mechanism of magnetization) and the possibility of the magnetic moment to rotate independently of the particle itself (Néel mechanism of magnetization). The work provides a comparison of theoretical conclusions with previously published experimental data.
Results. In the case when the constant and alternating magnetic fields are perpendicular to each other, the function of the amplitude of the magnetoacoustic effect on the magnitude of the constant magnetic field has a linearly increasing character at first, then turns into saturation. The frequency dependence of the magnitude of the magnetoacoustic effect can exhibit several maxima. Theoretical analysis shows that the number of maxima is four (three were found experimentally). At a fixed magnetic field, the maximum value of the elastic vibrations generated in the magnetic fluid increases in proportion to the square of the frequency. In the case of parallelism of alternating and constant magnetic fields, the dominant mechanism for the generation of elastic waves is the ponderomotive mechanism. The dependence of the magnetoacoustic effect on a constant magnetic field has the form of the Langevin function.
Conclusion. The paper proposes mechanisms for the generation of elastic waves in a magnetic fluid in a constant magnetic field by applying an alternating magnetic field, which in one case is perpendicular to the alternating field, and in the other parallel to it.
Keywords
About the Authors
V. M. PaukovRussian Federation
Vladimir M. Paukov, Сand. of Sci. (Physics and Mathematics), Associate Professor of the Department of Nanotechnology, General and Applied Physics
50 Let Oktyabrya str. 94, Kursk, 305040
A. G. Besedin
Russian Federation
Alexander G. Besedin, Сand. of Sci. (Physics and Mathematics), Associate Professor of the Department of Nanotechnology, General and Applied Physics
50 Let Oktyabrya str. 94, Kursk, 305040
A. O. Tantsyura
Russian Federation
Anton O. Tantsyura, Сand. of Sci. (Physics and Mathematics), Associate Professor of the Department of Power Supply
50 Let Oktyabrya str. 94, Kursk, 305040
A. S. Chekadanov
Russian Federation
Alexander S. Chekadanov, Researcher of the Regional Center for Nanotechnology
50 Let Oktyabrya str. 94, Kursk, 305040
Yu. A. Neruchev
Russian Federation
Yuri A. Neruchev, Dr. of Sci. (Physics and Mathematics), Professor
33 Radishcheva str., Kursk 305000
A. A. Bulgakova
Russian Federation
Anastasia A. Bulgakova, Student of Department of Nanotechnology, General and Applied Physics
50 Let Oktyabrya str. 94, Kursk, 305040
References
1. Odenbach S. Recent progress in magnetic fluid research. J. Phys.: Condensed. Matter., 2004, vol. 16(32), рр. R1135.
2. Mikhalev Yu. O., Arefieva T. A. Sposob polucheniya magnitnoi zhidkosti [Magnetic fluid production method]. Patent RF, no. 2208584, 2001.
3. Pattanaik M. S., Varma V. B., Cheekati S. K., eds. Optimal ferrofluids for magnetic cooling devices. Scientific Reports, 2021, vol. 11, p. 24167.
4. Shima P. D., Philip J. Tuning of thermal conductivity and rheology of nanofluids using an external stimulus. The Journal of Physical Chemistry C, 2011, vol. 115 (41), p. 20097.
5. Bibo A., Masana R., King A., Li G., Daqaq M. F. Electromagnetic ferrofluid-based energy harvester. Physics Letters A, 2012, vol. 376 (32), pp. 2163–2166.
6. Odenbach S. Ferrofluids: magnetically controllable fluids and their applications. Springer, 2008. 253 p.
7. Zhou J., Papautsky I. Viscoelastic microfluidics: progress and challenges. Microsyst. Nanoeng., 2020, vol. 6, no. 113.
8. Polunin V. Acoustics of nanodispersed magnetic fluids. CRC Press, 2019. 472 p.
9. Amin P., Patel M. Magnetic nanoparticles-a promising tool for targeted drug delivery system. Asian J. Nanosci. Mater., 2020, vol. 3(1), pp. 24–37.
10. Lim Z. W., Varma V. B., Ramanujan R. V., Miserez A. Magnetically responsive peptide coacervates for dual hyperthermia and chemotherapy treatments of liver cancer. Acta Biomater., 2020, vol. 110, pp. 221–230.
11. Blums E., Cebers A., Maiorov M. M. Magnetic Fluids. New York, Walter de Gruyter, 1997. 416 p.
12. Rinaldi С. Magnetic fluid rheology and flows. Curr. Opin. Colloid Interface Sci., 2005, vol. 10, pp. 513–519.
13. Usadel K. D., eds. Frequency-dependent conversion of the torque of a rotating magnetic field on a ferrofluid confined in a spherical cavity. Soft Matter., 2019, vol. 15, p. 9018.
14. Pshenichnikov A. F., Lebedev A. V., Shliomis M. I. On the rotational effect in nonuniform magnetic fluids. Magnetohydrodynamics, 2000, vol. 36, pp. 275–281.
15. Engel A., Reimann P. Thermal ratchet effects in ferrofluids. Phys. Rev. E, 2004, vol. 70, pp. 051107.
16. Storozhenko A. M., Stannarius R., Tantsyura A. O., Shabanova I. A. Measurement of the torque on diluted ferrofluid samples in rotating magnetic fields. J. Magn. Magn. Mater., 2017, vol. 431, pp. 66–69.
17. Dikanskii Yu. I., Borisenko O. V., Bedzhanyan M. A. Peculiarities of motion of a ferrofluid drop in a rotating magnetic field. Tech. Phys., 2013, vol. 58, p. 475.
18. Sterr V., Krauß R., Morozov K. I., Rehberg I., Engel A., Richter R. Rolling ferrofluid drop on the surface of a liquid. New J. Phys., 2008, vol. 10, p. 063029.
19. Paukov V. M., Polunin V. M. Polevaya zavisimost' MAE v magnitnoi zhidkosti [Field dependence of MAE in magnetic fluid]. Ul'trazvuk i termodinamicheskie svoistva veshchestva = Ultrasound and thermodynamic properties of matter, 1994, pp. 74–76.
20. Polunin V. M., Ignatenko N. M., Lazarenko V. M., Gavrilov Yu. A. O nekotorykh osobennostyakh vozbuzhdeniya kolebanii v magnitnoi zhidkosti [On some features of the excitation of oscillations in a magnetic fluid]. Magnitnaya gidrodinamika = Magnetic hydrodynamics, 1982, vol. 2, pp. 133–135.
21. Pirozhkov B. I., Afanasyev S. A. O nizkochastotnoi relaksatsii v magnitnykh zhidkostyakh [On low-frequency relaxation in magnetic liquids]. Vestnik Permskogo universiteta. Fizika = Bulletin of Perm University. Physics, 1998, is. 4, p. 113.
22. Paukov V. M. Issledovanie cheskoi prirody magnitoakusticheskogo effekta na magnitnoi zhidkosti. Avtoref. dis. kand. fiz.-mat. nauk [Investigation of the physical nature of the magnetoacoustic effect on a magnetic fluid. Cand. physical and mathem. sci. abstract diss.]. Kursk, 2004. 25 p.
23. Pshenichnikov A. F., Pirozhkov B. I., Fedorenko A. A. [The use of crossed fields for the analysis of the dispersed composition of magnetic fluids]. 10 Yubileinaya mezhdunarodnaya Plesskaya konferentsiya po magnitnym zhidkostyam. Sbornik nauchnykh trudov [10 Anniversary International Plesk conference on magnetic liquids. Collection of scientific works]. Ivanovo, Ivanovo St. Univ. of Energy Publ., 2003, pp. 81–86.
24. Pirozhkov B. I. Issledovanie yavlenii agregirovaniya v magnitnoi zhidkosti metodom skreshchennykh magnitnykh polei [Study of the phenomena of aggregation in magnetic fluid by the method of crossed magnetic fields]. Izvestiya AN SSSR. Seriya Fizicheskaya = Proceedings of the USSR Academy of Sciences. Series Physical, 1987, vol. 51, p. 1088.
Review
For citations:
Paukov V.M., Besedin A.G., Tantsyura A.O., Chekadanov A.S., Neruchev Yu.A., Bulgakova A.A. Generation of Low-Frequency Elastic Waves in Magnetic Fluids. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(1):146-158. (In Russ.) https://doi.org/10.21869/22231528-2022-12-1-146-158