Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Photoluminescence of ZnSxSe1-x and ZnSxSe1-x:Mn Nanocrystals Obtained by Combustion Synthesis

https://doi.org/10.21869/2223-1528-2022-12-1-99-117

Abstract

Purpose. Investigation of the photoluminescence spectra of ZnSxSe1-x and ZnSxSe1-x:Mn nanocrystals and determination of the parameters of individual emission bands of ZnSxSe1-x:Mn nanocrystals obtained by combustion synthesis.

Methods. Characterization of ZnSxSe1-x and ZnSxSe1-x:Mn nanocrystals using photoluminescence spectroscopy.  Extraction of the parameters of individual bands due to a method based on the Tikhonov method and the derivative spectroscopy method.

Results. here is an abrupt change in the half-width of the integral photoluminescence spectrum in ZnSxSe1-x and ZnSxSe1-x: Mn nanocrystals and the signal intensity; this may be due to the crystal lattice transformation. We determined the parameters of individual photoluminescence spectra ZnSxSe1-x:Mn nanocrystals according to a single experimental measurement. The nature of the individual photoluminescence bands is discussed.

Conclusion. The obtained results of the dependencies can be explained by the change in the band gap of the ZnSxSe1-x and ZnSxSe1-x:Mn nanocrystals, as well as by the redistribution of the intensities of the individual bands. The difference between the integral (sum of individual bands) and experimental spectrum arises from the presence of an additional individual band of low intensity in the experimental spectrum. This individual band is located in the region of  E = 2.48 eV and is associated with the electronic transitions in Mn2+ ions in the ZnS lattice.

About the Authors

E. G. Plakhtii
Belgorod State National Research University
Russian Federation

Evgenii G. Plakhtii, Applicante of the Department of Theoretical and Experimental Physics  of the Institute of Engineering and Digital  Technologies

85 Pobeda str., Belgorod 308015



V. S. Zakhvalinsky
Belgorod State National Research University
Russian Federation

Vasily S. Zakhvalinsky, Dr. of Sci. (Physics  and Mathematics), Professor, Professor of  the Department of Theoretical and Experimental Physics of the Institute of Engineering and Digital Technologies

85 Pobeda str., Belgorod 308015



I. V. Bocharov
Belgorod State National Research University
Russian Federation

Ivan V. Bocharov, Post-Graduate Student  of the Department of Theoretical and  Experimental Physics of the Institute  of Engineering and Digital Technologies

85 Pobeda str., Belgorod 308015



References

1. Zhou Q., Bai Z., Lu W. G., Wang Y., Zou B., Zhong H. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Advanced Materials, 2016, vol. 28, no. 41, pp. 9163–9168. https://doi.org/10.1002/adma.201602651

2. Deopa N., Rao A. S., Choudhary A., Saini S., Navhal A., Jayasimhadri M., Haranath D., Prakash G. V. Photoluminescence investigations on Sm 3+ ions doped borate glasses for tricolor w-LEDs and lasers. Materials Research Bulletin, 2018, vol. 100, рр. 206–212. https://doi.org/10.1016/j.materresbull.2017.12.019

3. Adachi S. Photoluminescence properties of Mn4+-activated oxide phosphors for use in white-LED applications: a review. Journal of Luminescence, 2018, vol. 202, рр. 263–281. https://doi.org/10.1016/j.jlumin.2018.05.053

4. Wang Z., Zeng H., Sun L. Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental applications. Journal of Materials Chemistry C, 2015, vol. 3, no. 6, рр. 1157–1165. https://doi.org/10.1039/C4TC02536A

5. Skoog D. A., Holler F. J., Crouch S. R. Principles of instrumental analysis. Cengage learning, 2017. 961 p.

6. Kaszewski J., Kiełbik P., Wolska E., Witkowski B., Wachnicki Ł., Gajewski Z., Godlewski M., Godlewski M. M. Tuning the luminescence of ZnO: Eu nanoparticles for applications in biology and medicine. Optical Materials, 2018, vol. 80, рp. 77–86. https://doi.org/10.1016/j.optmat.2018.04.028

7. Zakhvalinskii V. S., Nguyen Thi Tham Hong, Pilyuk E. A., Emelaynov V. M. Sintez i issledovanie elektroprovodnosti materialov solnechnoi energetiki Cu2SnS3 i Cu2ZnSnS4 [Synthesis and study of electrical conductivity properties of solar energy materials Cu2SnS3 and Cu2ZnSnS4]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2020, vol. 10, no. 2, pp. 58–66.

8. Yang H., Yang S., Kong J., Dong A., Yu S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nature protocols, 2015, vol. 10, no. 3, pp. 382–396. https://doi.org/10.1038/nprot.2015.024

9. Bacherikov Y. Y., Vorona I. P., Markevich I. V., Korsunska N. O., Kurichka R. V. Competition of the self-activated and Mn-related luminescence in ZnS single crystals. Solid State Communications, 2018, vol. 274, pp. 31–35. https://doi.org/10.1016/j.ssc.2018.02.017

10. Nekrasov A. A., Ivanov V. F., Vannikov A. V. Effect of pH on the structure of absorption spectra of highly protonated polyaniline analyzed by the Alentsev – Fock method. Electrochimica acta, 2001, vol. 46, no. 26–27, pp. 4051–4056. https://doi.org/10.1016/S00134686(01)00693-4

11. Slyotov M. М., Gavaleshko O. S., Kinzerska O. V. Preparation and luminescent properties of α-ZnSe heterolayers with surface nanostructure. Journal of Nano-and Electronic Physics, 2017, vol. 9, no. 5, pp. 05046. https://doi.org/10.21272/jnep.9(5).05046

12. OriginPro 9.1. OriginLab Corporation, One Roundhouse Plaza, Suite 303, Northampton, MA 01060, United States. 1800-969-7720. Available at: www.OriginLab.com. (accessed 16.12.2021)

13. Sadekar H. K., Ghule A. V., Sharma R. Bandgap engineering by substitution of S by Se in nanostructured ZnS1–xSex thin films grown by soft chemical route for nontoxic optoelectronic device applications. Journal of Alloys and Compounds, 2011, vol. 509, no. 18, pp. 5525–5531. https://doi.org/10.1016/j.jallcom.2011.02.089

14. Tang T. P., Wang W. L., Wang S. F. The luminescence characteristics of ZnSxSe1–x phosphor powder. Journal of alloys and compounds, 2009, vol. 488, no. 1, pp. 250–253. https://doi.org/10.1016/j.jallcom.2009.08.098

15. Gopi C. V., Venkata-Haritha M., Kim S. K., Kim H. J. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn–ZnSe shell structure with enhanced light absorption and recombination control. Nanoscale, 2015, vol. 7, no. 29, pp. 12552–12563. https://doi.org/10.1039/C5NR03291A

16. Levashov E. A., Mukasyan A. S., Rogachev A. S., Shtansky D. V. Self-propagating high-temperature synthesis of advanced materials and coatings. International materials reviews, 2017, vol. 62, no. 4, pp. 203–239. https://doi.org/10.1080/09506608.2016.1243291

17. Markov A. A., Filimonov I. A., Poletaev A. V., Vadchenko S. G., Martirosyan K. S. Generation of charge carriers during combustion synthesis of sulfides. International Journal of Self-Propagating High-Temperature Synthesis, 2013, vol. 22, no. 2, pp. 69–76. https://doi.org/10.3103/S1061386213020052

18. Liu G., Yuan X., Li J., Chen K., Li Y., Li L. Combustion synthesis of ZnSe with strong red emission. Materials & Design, 2016, vol. 97, pp. 33–44. https://doi.org/10.1016/j.matdes.2016.02.063

19. Tian Z., Chen Z., Yuan X., Cui W., Zhang J., Sun S., Liu G. Preparation of ZnSe powder by vapor reaction during combustion synthesis. Ceramics International, 2019, vol. 45, no. 14, pp. 18135–18139. https://doi.org/10.1016/j.ceramint.2019.05.321

20. Kovalenko А. V., Plakhtii Y. G., Khmelenko О. V. The peculiarities of the properties of ZnSxSe1-x nanocrystals obtained by self-propagating high-temperature synthesis. Functional materials, 2018, vol. 4, pp. 665. https://doi.org/10.15407/fm25.04.665

21. Kovalenko A. V., Plakhtii Y. G., Khmelenko O. V. Research of photoluminescence spectra of ZnSxSe1–x:Mn nanocrystals obtained by method of self-propagation high-temperature synthesis. Journal of Nano- and Electronic Physics, 2019, vol. 11, no. 4, pp. 04031-1-04031-5. https://doi.org/10.21272/jnep.11(4).04031

22. Bulaniy M. F., Kovalenko A. V., Morozov A. S., Khmelenko O. V. Obtaining of Nanocrystals ZnS:Mn by means of self-propagating high-temperature synthesis. Journal of Nano- and Electronic Physics, 2017, vol. 9, no. 2, pp. 02007. https://doi.org/10.21272/jnep.9(2).02007

23. Taguchi T., Kawakami Y., Yamada Y. Interface properties and the effect of strain of ZnSe/ZnS strained-layer superlattices. Physica B: Condensed Matter, 1993, vol. 191, no. 1-2, pp. 23–44. https://doi.org/10.1016/0921-4526(93)90176-7

24. Alghamdi Y. Composition and band Gap controlled AACVD of ZnSe and ZnSxSe1-x thin films using novel single Source precursors. Materials Sciences and Applications, 2017, vol. 8, no. 10, pp. 726–737. https://doi.org/10.4236/msa.2017.810052

25. Wang Z., Zhan X., Wang Y., Safdar M., Niu M., Zhang J., Huang Y., He J. ZnO/ZnSxSe1–x core/shell nanowire arrays as photoelectrodes with efficient visible light absorption. Applied Physics Letters, 2012, vol. 101, no. 7, pp. 073105. https://doi.org/10.1063/1.4745918

26. Trubaieva O. G., Chaika M. A., Zelenskaya O. V. Mixed ZnSxSe1–x crystals as a possible material for alpha-particle and X-ray detectors. Ukrainian journal of physics, 2018, vol. 63, no. 6, pp. 546–551. https://doi.org/10.15407/ujpe63.6.546

27. Voitovich A. P., Kalinov V. S., Martynovich E. F., Novikov A. N., Stupak A. P. Luminescent method for determining low concentrations of a substance in optically dense media. Journal of Applied Spectroscopy, 2011, vol. 78, no. 5, pp. 725–732. https://doi.org/10.1007/s10812-011-9524-8

28. Avilés M. A., Gotor F. J. Tuning the excitation wavelength of luminescent Mn2+doped ZnSxSe1-x obtained by mechanically induced self-sustaining reaction. Optical Materials, 2021, vol. 117, pp. 111121. https://doi.org/10.1016/j.optmat.2021.111121

29. Kovalenko A. V., Plakhtiy E. G., Vovk S. M. Application of derivative spectroscopy method to photoluminescence in ZnS:Mn nanocrystals. Ukrainian journal of physical optics, 2018, vol. 19, no. 3, pp. 133–138. https://doi.org/10.3116/16091833/19/3/133/2018

30. Kovalenko O. V., Vovk S. M., Plakhtii Y. G. Method of smoothing photoluminescence spectra. Journal of Physics and Electronics, 2018, vol. 26, no. 2, pp. 73–80. https://doi.org/10.15421/331828

31. Yang R. D., Tripathy S., Tay F. E., Gan L. M., Chua S. J. Photoluminescence and micro-Raman scattering in Mn-doped ZnS nanocrystalline semiconductors. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2003, vol. 21, no. 3, pp. 984–988. https://doi.org/10.1116/1.1568350

32. Bacherikov Y. Y., Gilchuk A. V., Zhuk A. G., Kurichka R. V., Okhrimenko O. B., Zelensky S. E., Kravchenko S. A. Nonmonotonic behavior of luminescence characteristics of fine-dispersed self-propagating high-temperature synthesized ZnS:Mn depending on size of its particles. Journal of Luminescence, 2018, vol. 194, pp. 8–14. https://doi.org/10.1016/j.jlumin.2017.09.010

33. Li X., Zhang F., Ma C., Deng Y., Zhang L., Lu Z., He N. Controlling the morphology of ZnS: Mn2+ nanostructure in hydrothermal process using different solvents and surfactants. Nanoscience and Nanotechnology Letters, 2013, vol. 5, no. 2, pp. 271–276. https://doi.org/10.1166/nnl.2013.1495

34. Ghica D., Stefan M., Ghica C., Stan G. E. Evaluation of the segregation of paramagnetic impurities at grain boundaries in nanostructured ZnO films. ACS Applied Materials & Interfaces, 2014, vol. 6, no. 16, pp. 14231–14238. https://doi.org/10.1021/am5035329


Review

For citations:


Plakhtii E.G., Zakhvalinsky V.S., Bocharov I.V. Photoluminescence of ZnSxSe1-x and ZnSxSe1-x:Mn Nanocrystals Obtained by Combustion Synthesis. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(1):99-117. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-1-99-117

Views: 111


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)