Method for Stabilizing the Operation of the Electrode-Tool During Electric Spark Alloying of Metal Surfaces
https://doi.org/10.21869/2223-1528-2022-12-1-83-98
Abstract
Purpose of research. Expansion of technological possibilities of using the method of electrospark alloying due to the systematization and optimization of changes in the controlled electrical parameters of the process current.
Methods. To expand the technological capabilities in the formation of the executive surfaces of machine parts, a method for stabilizing the work of the electrode-tool during their electric spark alloying is proposed. The stability of the vibrating electrode-tool in the process of electric spark alloying is carried out by automatically monitoring the interelectrode gap by changing the frequency of the process current pulses. Process current impulses are formed as a result of the integrated action of two components. The first one is set directly due to mechanical vibrations of the electromagnetic vibrating electrode-tool and synchronizes the operation of the installation as a whole. The second one is formed due to the spacing in time of the synchronized control signals of the sequential discharge of all charged capacitive storages according to the algorithm - the discharge of the next one after the discharge of the previous one.
Results. It has been experimentally established that when using this method, it becomes possible to improve the quality of deposition of functional coatings by systematizing the choice of technological parameters of the process control. To implement the method, it is proposed to develop an original scheme and layout of the installation, which ensures the establishment of the influence of the operation of the components of its nodes (technological current) on the composition, structure, properties of the applied coatings.
Conclusion. Based on the experimental studies carried out, one of the ways to improve the functional properties of the executive surfaces of machine parts and mechanisms by changing the technology of using the electric spark doping method by improving the process equipment, namely, the electrical parameters of the process current pulse generator, is proposed.
About the Authors
S. V. KovalenkoRussian Federation
Sergey V. Kovalenko, Cand. of Sci. (Engineering), Associate Professor of the Department of Automation and System Engineering
136 Tihookeanskaya str., Khabarovsk 680042
A. V. Kaminskiy
Russian Federation
Alexandr V. Kaminskiy, Cand. of Sci. (Physics and Mathematics), Associate Professor of the Department of Automation and System Engineering
136 Tihookeanskaya str., Khabarovsk 680042
A. V. Kozyr'
Russian Federation
Arkadij V. Kozyr', Cand. of Sci. (Engineering), Associate Professor of the Department of Launch and Technical Missile Systems
21 Ignat'evskoe shosse, Blagoveshchensk 675027
L. A. Konevtsov
Russian Federation
Leonid A. Konevtsov, Cand. of Sci. (Engineering), Senior Researcher of the Laboratory of Physical and Chemical Fundamentals of Materials Technology
153 Tihookeanskaya str., Khabarovsk 680042
S. V. Konovalov
Russian Federation
Sergey V. Konovalov, Dr. of Sci. (Engineering), Professor, Head of the Department of Process Metallurgy and Aviation Material Science Department
34 Mosskovskoe shosse, Samara 443086
References
1. Verkhoturov A. D., Shpilev A. M., Konevtsov L. A. Samsonov i sovremennaya paradigma materialovedeniya [Samsonov and the modern paradigma materiarum scientiarum]. Izbrannye trudy professora A. D. Verkhoturova. T. 1: Obshchie problemy nauki o materialakh na sovremennom etape razvitiya chelovecheskoi tsivilizatsii [Opera Professoris A. D. Verkhoturov. Vol. 1. Quaestiones generales scientiarum de materiis in hodierno cultu humanitatis]; ed. by B. A. Voronov, Yu. A. Davydov, V. M. Makienko, L. A. Konevtsov. Khabarovsk, DVGUPS Publ., 2016, pp. 182–195.
2. Novikov E. P., Ageev E. V., Ageeva E. V. Sposob polucheniya poroshka titana metodom ehlektroehrozionnogo dispergirovaniya [Method for producing titanium powder by electro-erosive dispersion]. Patent RF, no. 2631549, 2017.
3. Boldin M. S., Nokhrin A. V., Sakharov N. V., Chuvil'deev V. N., Blagoveshchenskii Yu. V., Isaeva N. V., Shotin S. V., Trushin V. N., Smirnova E. S., Popov A. A., Lantsev E. A. [Electropulse plasma sintering of ceramics and hard alloys based on tungsten carbide from nanopowders obtained by plasma-chemical synthesis]. VI Vserossiiskaya konferentsiya po nanomaterialam s elementami nauchnoi shkoly dlya molodezhi. Sbornik materialov [Proceedings of VI All-Russian Conference on Nanomaterials with elements of a scientific school for youth]. Moscow, Institut metallurgii i materialovedeniya im. A. A. Baikova RAN, 2016, pp. 63–65. (In Russ.)
4. Ageev E. V., Grashkov S. A., Khardikov S. V. Vosstanovlenie korpusnykh detalei agregatov avtomobilya KGP s elektroerozionnymi materialami [Restoration of hull children's units of the KGP car with electroerosion materials]. Kursk, Universitetskaya kniga Publ., 2020. 174 p.
5. Ageev E. V., Sabelnikov B. N. Iznosostoikie bezvol'framovye tverdosplavnye poroshkovye materialy dlya vosstanovleniya iznoshennykh detalei avtomobilei [Wear-resistant volframeless solid-alloy powder materials for the restoration of worn-out parts of auto-mobiles]. Mir transporta i tekhnologicheskikh mashin = The world of transport and technological machines, 2020, no. 1 (68), pp. 11–17.
6. Ageev E. V., Ageeva A. E. Sostav, struktura i svoistva tverdosplavnykh poroshkov, poluchennykh elektrodispergirovaniem splava T5K10 v vode [Composition, structure and properties of hard-alloy rocks obtained by electrodispersion of T5K10 alloy in water]. Metallurg = Metallurgist, 2022, no. 2, рр. 39–43.
7. Lazarenko N. I., Lazarenko B. R. Elektroiskrovoe legirovanie metallicheskikh poverkhnostey [Electrosparkalloying of metal surfaces]. Elektronnaya obrabotka materialov = Electronic Processing of Materials, 1977, no. 3, pp. 12–16.
8. Verkhoturov A. D., Gordienko P. S., Dostovalov V. A., Konevtsov L. A., Panin E. S., Dostovalov D. V. Vysokoenergeticheskoe lokal'noe vozdeystvie na vol'framsoderzhashchie materialy I metally [High-energy local action on tungsten-containing materials and metals]. Vladivostok, Far. Eastern Federal. Univ. Publ, 2012. 472 p.
9. Kornienko L. P., Chernova G. P., Mikhailov V. V., Gitlevich A. E. Ispol'zovanie metoda elektroiskrovogo legirovaniya dlya povysheniya korrozionnoi stoikosti poverkhnosti titana [Using the method of electrospark alloying to improve the corrosion resistance of titanium surfaces]. Elektronnaya obrabotka materialov = Electronic processing of materials, 2011, no. 1, рр. 14–23.
10. Bilous O., Mahura B. Application of wear-resistant coating by electro-spark alloying method using an eutectic electrode material. Ukrainian journal of mechanical engineering andmaterials science, 2018, vol. 4, no. 1, pp. 40–48. https://doi.org/10.23939/ujmems2018.01.040
11. Katinas E., Jankauskas V., Kazak N., Michailov V. Improving abrasive wear resistance for steel hardox 400 by electro-spark deposition. Journal of Friction and Wear, 2019, vol. 40, no. 1, pp. 100–106. https://doi.org/10.3103/S1068366619010070
12. Hasanabadi F. M., Ghaini M. F., Ebrahimnia M., Shahverdi H. R. Production of amorphous and nanocrystalline iron based coatings by electro-spark deposition process. Surface and Coatings Technology, 2015, vol. 270, pp. 95–101. https://doi.org/10.1016/j.surfcoat.2015.03.016
13. Kiryukhantsev-Korneev Ph., Sytchenko A., Sheveyko A., Moskovskikh D., Vorotylo S. Two-layer nanocomposite TiC-based coatings produced by a combination of pulsed cathodic arc evaporation and vacuum electro-spark alloying. Materials, 2020, vol. 13, no. 3, p. 547. https://doi.org/10.3390/ma13030547
14. Burkov A. A., Kulik M. A. Kompozitsionnye elektroiskrovye pokrytiya na osnove amorfnoy matritsy s vklyucheniyami boridov vol'frama [Composite electrospark coatings based on an amorphous matrix with inclusions of tungsten borides]. Fundamental'nye problemy sovremennogo materialovedeniya = Fundamental problems of modern materials science, 2018, vol. 15, no. 3, pp. 320–327. https://doi.org/10.25712/ASTU.1811-1416.2018.03.002
15. Zhao H., Gao C., Wu X.Y., Xu B., Lu Y. J., Zhu L. K. A novel method to fabricate composite coatings via ultrasonic-assisted electro-spark powder deposition. Ceramics International, 2019, vol. 45, pp. 22528–22537. https://doi.org/10.1016/j.ceramint.2019.07.279
16. Kostadinov G. D., Penyashki T. G., Petrzhik M. I., Kudryashov A. E., Kandeva M. K., Elenov B. P., Dimitrova E. T., Mortev I. En. Elimination of irregularities and defects on steel surfaces through electro spark surface modification with aluminum alloys. Materials, Methods & Technologies Journal of International Scientific Publications, 2020, vol. 14, pp. 106–116.
17. Nikolenko S. V., Burkov A. A., Dvornik M. I., Zaitsev A. V., Sui N. A. Effect of parameters of electric spark discharge on the physico-chemical characteristics of steel 45 surface after the ESA electrodes based on WC–8%Co with chromium–carbide additives. Surface Engineering and Applied Electrochemistry, 2019, vol. 55, pp. 251–258. https://doi.org/10.3103/S1068375519030141
18. Campanelli S. L., Angelastro A., Signorile C. G., Casalino G. Investigation on direct laser powder deposition of 18 Ni (300) marage steel using mathematical model and experimental characterization. J. Adv. Manuf. Technol., 2017, vol. 89, pp. 885–895. https://doi.org/10.1007/s00170-016-9135-x
19. Kovalenko S. V., Kozyr' A. V, Konevtsov L. A., Kaminskiy A. V. Generator impul'sov tekhnologicheskogo toka [Process current pulse generator]. Patent RF, no. 2729809, 2020.
Review
For citations:
Kovalenko S.V., Kaminskiy A.V., Kozyr' A.V., Konevtsov L.A., Konovalov S.V. Method for Stabilizing the Operation of the Electrode-Tool During Electric Spark Alloying of Metal Surfaces. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(1):83-98. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-1-83-98