Hydrate Formation in the Restoration of Machine Parts by Electrodeposited Iron Coatings
https://doi.org/10.21869/2223-1528-2022-12-1-70-82
Abstract
The purpose. To study the process of formation of sparingly soluble hydroxides and basic salts in the cathode layer during the restoration of machine parts by electrodeposited iron coatings.
Methods. To determine the pH of the hydrate formation of ferrous electrolytes, the method of potentiometric titration with a glass electrode was adopted. The change in the course of the titration curves was recorded using an automatic high-precision potentiometric titrator ATP-02 by direct reading of pH values with an accuracy of ±0.05 units.
The pH of the cathode layer was studied using a microglass electrode. For research, an electrolyte containing 200 kg/m3 of ferrous sulfate and 150–200 kg/m3 of ferric chloride was adopted.
Results. Studies have shown that when using current densities above 30 A/dm2, a decrease in the quality of coatings was noted (the appearance of a large number of cracks, local flaking upon impact). To obtain precipitation with satisfactory qualities, it is necessary to apply current densities up to 30 A/dm2. An increase in the electrolyte temperature from 293 to 333 K leads to a drop in the pH of the near-cathode layer from 5.9 to 5.2 units. A change in pH in the volume of the solution from 0.3 to 1.8 units leads to an increase in pH in the cathode layer.
Also noteworthy is the rather low quality of the coatings (peeling on bending) obtained at an electrolyte pH above 1.4 units. Therefore, the best condition for electrolysis is the use of an electrolyte acidity of up to 1.4 units.
Conclusion. The study of the pH of the cathode layer of the sulfate-chloride electrolyte depending on the various additions of iron chloride and the effect of electrolysis conditions (current density, temperature and pH of the electrolyte) on the pH shift of the cathode layer showed that an increase in the concentration of iron chloride in a solution of 200 kg/m3 of sulfate reduces the pH of the cathode layer, an increase in temperature also reduces the pH of the catholyte of the sulfate-chloride solution, and an increase in the current density and pH in the volume of the solution increase the pH of the cathode layer.
About the Authors
V. I. SerebrovskyRussian Federation
Vladimir I. Serebrovsky, Dr. of Sci. (Engineering), Professor, Head of the Department of Electrical Engineering and Electric Power Engineering
70 K. Marx str., Kursk 305021
E. S. Kalutsky
Russian Federation
Evgeny S. Kalutsky, Cand. of Sci. (Engineering), Associate Professor of the Department of Electrical Engineering and Power Industry
70 K. Marx str., Kursk 305021
V. V. Rudenko
Russian Federation
Veronika V. Rudenko, Cand. of Sci. (Engineering), Associate Professor of the Department of Electrical Engineering and Power Industry
70 K. Marx str., Kursk 305021
References
1. Kalutsky E. S., Blinkov B. S. [Influence of current density on the quality of electrodeposited coatings]. Nauchnoe obespechenie agropromyshlennogo proizvodstva. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii [Scientific support of agro-industrial production. Materials of the International scientific-practical conference]. Kursk, Kursk. St. Agricultural Acad. Publ. 2014, pp. 53–54. (In Russ.)
2. Safronov R. I., Kalutsky E. S., Zhigulin A. A., Serebrovsky A. V. Povyshenie prochnosti elektroliticheskikh zheleznykh pokrytii [Increasing the strength of electrolytic iron coatings]. Regional'nyi vestnik = Regional Bulletin, 2016, no. 2 (3), pp. 46–47.
3. Serebrovsky V. I., Safronov R. I., Kalutsky E. S. [Electrodeposition of alloyed iron coatings]. Dostizheniya nauchno-tekhnicheskogo progressa agropromyshlennomu kompleksu. Materialy Vserossiiskoi (Natsional'noi) nauchno-prakticheskoi konferentsii [Achievements of scientific and technological progress for the agro-industrial complex. Materials of the AllRussian (National) scientific-practical conference]. Kursk, Kursk St. Agricultural Acad. named after I. I. Ivanov, 2017, pp. 69–77. (In Russ.)
4. Kalutsky E. S., Serebrovsky V. V., Blinkov B. S. Uprochnenie elektroosazhdennogo zheleza borom [Hardening of electrodeposited iron with boron]. Vestnik Kurskoi gosudarstvennoi sel'skokhozyaistvennoi akademii = Bulletin of the Kursk State Agricultural Academy, 2016, no. 3, pp. 78–80.
5. Serebrovsky V. V., Safronov R. I., Afanasiev E. A., Kalutsky E. S., Grigorov I. Yu. Primenenie disul'fida molibdena dlya povysheniya kachestva elektroosazhdennykh kompozitsionnykh pokrytii [The use of molybdenum disulfide to improve the quality of electrodeposited composite coatings]. Vestnik Kurskoi gosudarstvennoi sel'skokhozyaistvennoi akademii = Bulletin of the Kursk State Agricultural Academy, 2018, no. 8, pp. 197–200.
6. Kalutsky E. S., Serebrovsky V. V., Blinkov B. S., Dolzhikov G. V. Elektroosazhdenie binarnykh splavov na osnove zheleza [Electrodeposition of binary alloys based on iron]. Sel'skii mekhanizator = Rural mechanic, 2016, no. 5, pp. 35–37.
7. Blinkov B. S., Serebrovsky V. V., Kalutsky E. S. Elektroosazhdenie splavov na osnove zheleza [Electrodeposition of alloys based on iron]. Vestnik Kurskoi gosudarstvennoi sel'skokhozyaistvennoi akademii = Bulletin of the Kursk State Agricultural Academy, 2016, no. 2, pp. 67–70.
8. Serebrovsky V. I., Bogomolov S. A., Kalutsky E. S. O vozmozhnosti elektroosazhdeniya dvukhkomponentnykh iznosostoikikh zhelezomolibdenovykh i zhelezovol'framovykh splavov iz khloristogo zheleznogo elektrolita [On the possibility of electrodeposition of two-component wear-resistant iron-molybdenum and iron-tungsten alloys from ferric chloride electrolyte]. Vestnik Kurskoi gosudarstvennoi sel'skokhozyaistvennoi akademii = Bulletin of the Kursk State Agricultural Academy, 2014, no. 5, pp. 77–78.
9. Ageeva E. V., Khardikov S. V., Ageeva A. E. Struktura i svoistva spechennykh obraztsov iz elektroerozionnykh khromsoderzhashchikh poroshkov, poluchennykh v butilovom spirte [Structure and properties of sintered samples from the erosion of chromium-containing powders produced in butyl alcohol]. Sovremennye materialy, tekhnika i tekhnologii = Modern materials, equipment and technologies, 2021, no. 6 (39), pp. 4–13.
10. Ageeva E. V., Latypov R. A., Burak P. I., Ageev E. V. Poluchenie tverdosplavnykh izdelii kholodnym izostaticheskim pressovaniem elektroerozionnykh poroshkov i ikh issledovanie [Obtaining hard-alloy products by cold isostatic pressing of electroerosive powders and their research]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2013, no. 5 (50), pp. 116–125.
11. Ageev E. V., Gadalov V. N., Serebrovsky V. I., Semenikhin B. A., Ageeva E. V., Latypov R. A., Gnezdilova Yu. P. Issledovanie granulometricheskogo sostava poroshkov, poluchennykh eletroerozionnym dispergirovaniem tverdogo splava i ispol'zuemykh pri vosstanovlenii i uprochnenii detalei avtotraktornoi tekhniki [Investigation of the granulometric composition of powders obtained by electroerosive dispersion of a hard alloy and used in the restoration and hardening of parts of automotive equipment]. Vestnik Kurskoi gosudarstvennoi sel'skokhozyaistvennoi akademii = Bulletin of the Kursk State Agricultural Academy, 2010, no. 4, pp. 76–79.
12. Zhuravlev G. M., Sergeev N. N., Gvozdev A. E., Sergeev A. N., Ageeva E. V., Maliy D. V. Fiziko-mekhanicheskii podkhod k analizu protsessov vytyazhki s utoneniem tsilindricheskikh izdelii s prognozirovaniem deformatsionnoi povrezhdaemosti materiala [Physico-mechanical approach to the analysis of drawing processes with thinning of cylindrical products with the prediction of deformation damage of the material]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2016, no. 4 (67), pp. 39–56.
13. Latypov R. A., Latypova G. R., Ageev E. V., Altukhov A. Y., Ageeva E. V. Properties of the coatings fabricated by plasma-jet hard-facing by dispersed mechanical engineering wastes. Russian metallurgy (Metallically), 2018, vol. 2018, no. 6, pp. 573–575.
14. Ageev E. V., Karpenko V. Yu., Gvozdev A. E., Ageeva E. V. Sposob polucheniya zagotovok iz poroshkovoi bystrorezhushchei stali [Method of obtaining blanks from powder high-speed steel]. Patent RF, no. 2563609, 2015.
15. Ageev E. V., Latypova G. R., Davydov A. A., Ageeva E. V. Provedenie rentgenospektral'nogo mikroanaliza tverdosplavnykh elektroerozionnykh poroshkov [Conducting Xray spectral microanalysis of carbide electroerosion powders]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2012, no. 5 (44), pt. 2, pp. 99–102.
16. Ageev E. V., Gorokhov A. A., Altukhov A. Yu., Shcherbakov A. V., Hardikov S. V. Rentgenospektral'nyi mikroanaliz nikhromovogo poroshka, poluchennogo metodom elektroerozionnogo dispergirovaniya v srede kerosina [X-ray spectral microanalysis of nichrome powder obtained by the method of electroerosive dispersion in kerosene medium]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2016, no. 1 (64), pp. 26–31.
17. Ageev E. V., Semenikhin B. A., Latypov R. A. Metod polucheniya nanostrukturnykh poroshkov na osnove sistemy WC-Co i ustroistvo dlya ego osushchestvleniya [Method of obtaining nanostructured powders based on the WC-Co system and a device for its implementation]. Fundamental'nye i prikladnye problemy tekhniki i tekhnologii = Fundamental and applied problems of engineering and technology, 2010, no. 5 (283), pp. 39–42.
Review
For citations:
Serebrovsky V.I., Kalutsky E.S., Rudenko V.V. Hydrate Formation in the Restoration of Machine Parts by Electrodeposited Iron Coatings. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(1):70-82. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-1-70-82