The Model of the Small Ferrogel Sample with Representation of Polymer Matrix as Lennard-Jones fluid with Elastic Cross-Links
https://doi.org/10.21869/2223-15282022-12-4-124-139
Abstract
Purpose. To develop a model of small sample of the ferrogel with non-prescribed internal structure, which allows to account excluded volume of polymer matrix and permits noticeable filler rearrangements under external magneto-mechanical load, and simultaneously, has sufficient numerical efficiency.
Methods and approaches. The model is based on a coarse-grained molecular dynamics approach. Ferrogel is represented as system of spherical objects of two types – single-domain magnetic particles and polymer “blobs” – bound by Lennard-Jones interaction and network of elastic bonds. The later has random and coherent internal structure, which is formed at the initial stage of the calculation, and ensures elastic response of the sample. The influence of the thermofluctuations on the ferrogel is accounted through Langevin thermostat.
Results. The series of calculations for submicron samples with various concentration of monodisperse magnetic nanoparticles were performed. The dependencies of the average sample magnetic moment, obtained in the simulation of quasi-static magnetization cycles, shows, particularly, that for considered model dipolar interaction promotes magnetization. Then, numerical experiments on the uniaxial mechanical stretching were performed 1) for non-magnetized samples and 2) in the presence of a permanent magnetic field. It is found, that magnetization reinforces material elastic module, especially in case when the field is parallel to stretching direction.
Concluson. There is proposed a model of the small ferrogel sample with representation of gel matrix as LennardJones fluids crosslinked by elastic bonds. Test calculations with samples with various concentration of magnetic filler prove the numerical efficiency and physical propriety of the model. The further development of the model are related to increasing of amount of magnetic particles and identification of mechanical model parameters based to experimental data regarding real ferrogel behavior.
Keywords
About the Authors
A. S. KhardinaRussian Federation
Anfisa S. Khardina, Student
29 Komsomolskiy Av., Perm 614990
P. V. Melenev
Russian Federation
Petr V. Melenev, Сand. of Sci. (Physical and Matematical), Lead Engineer
1 Academika Koroleva Str., Perm 614013
Researcher ID: K-5135-2014
References
1. Borbáth T., Bica D., Potencz I., Borbáth I., Boros T., Vékás L. Leakage-free rotating seal systems with magnetic nanofluids and magnetic composite fluids designed for various applications. International Journal of Fluid Machinery and Systems, 2011, vol. 4, no. 1, pp. 67–75.
2. Rosensweig R. E., Hirota Y., Tsuda S., Raj K. Study of audio speakers containing ferrofluid. Journal of Physics: Condensed Matter, 2008, vol. 20, no. 20, pp. 204147.
3. Rahisuddin R., Sharma P. K., Salim M., Garg G. Application of ferrofluid: as a targeted drug delivery system in nanotechnology. International Journal of Pharmaceutical Sciences Review and Research, 2010, vol. 5, no. 3, pp. 115–119.
4. Polunin V. M., Mio Min Than, Shabanova I. A., Boev M. L., Besedin A. G., Lobova O. V., Sychev G. T. Fisika formirovaniya bolschih porciy gaza pri pomoschi magnitozhidkostnoy membrani [Physics of formation of large portions of gas with the help of aferrofluid membrane]. Izvestiya YugoZapadnogo gosudarstvennogo universiteta. Seriya: Fisika i Khimiya = Proceedings of the Southwest State University. Series: Physics and Chemistry, 2013, no. 2, pp. 19–31.
5. Vicente J. de, Klingenbergb D. J., Hidalgo-Alvareza R. Magnetorheological fluids: a review. Soft Matter, 2011, vol. 7, is. 8, pp. 3701–3710
6. Bira N., Dhagat P., Davidson J. R. A review of magnetic elastomers and their role in soft robotics. Frontiers in Robotics and AI, 2020, vol. 7. http://doi.org/10.3389/frobt.2020.588391
7. Zhao X., Kim J., Cezar C. A., Huebsch N., Lee K., Bouhadir K., Mooney D. J. Active scaffolds for on-demand drug and cell delivery. Proceedings of the National Academy of Sciences USA, 2011, vol. 108, no. 1, pp. 67–72.
8. Babincova M., Leszczynska D., Sourivong P., Čičmanec P., Babinec P. Superparamagnetic gel as a novel material for electromagnetically induced hyperthermia. Journal of Magnetism and Magnetic Materials, 2001, vol. 225, no. 1–2, pp. 109–112.
9. Shahinpoor M., Kim K. J., Mojarrad M. Artificial muscles: applications of advanced polymeric nanocopmosites. New York, London, CRC Press, Taylor & Francis Group, 2007. 480 p.
10. Li Y., Huang G., Zhang X., Li B., Chen Y., Lu T., Lu T. J., Xu F. Magnetic hydrogels and their potential biomedical applications. Advanced Functional Materials, 2013, vol. 23, no. 6, pp. 660–672.
11. Blyakhman F. A., Safronov A. P., Zubarev A. Yu., Shklyar T. F., Makeyev O. G., Makarova E. B., Melekhin V. M., Larrañaga A., Kurlyandskaya G. V. Polyacrylamide ferrogels with embedded maghemite nanoparticles for biomedical engineering. Results in Physics, 2017, vol. 7, pp. 3624– 3633.
12. Stolbov O. V., Raikher Yu. L., Balasoiu M. Modelling of magnetodipolarstriction in soft magnetic elastomers. Soft Matter., 2011,vol. 7, is. 18, pp. 8484–8487.
13. Huang S., Pessot G., Cremer P., Weeber R., Holm C., Nowak J., Odenbach S., Menzel A. M., Auernhammer G. K. Buckling of paramagnetic chains in soft gels. Soft Matter., 2016, vol. 12, is. 1, pp. 228– 237.
14. Wood D. S., Camp P. J. Modeling the properties of ferrogels in uniform magnetic fields. Physical Review E, 2011, vol. 83, no. 1, pp. 011402.
15. Pessot G., Cremer P., Borin D. Y., Odenbach S., Löwen H., Menzel A. M. Structural control of elastic moduli in ferrogels and the importance of non-affine deformations. Journal of Chemical Physics, 2014, vol. 141, no. 12, pp. 124904.
16. Sánchez P. A., Gundermann T., Dobroserdova A., Kantorovich S. S., Odenbach S. Importance of matrix inelastic deformations in the initial response of magnetic elastomers. Soft Matter., 2018, vol. 14, is. 11, pp. 2170–2183.
17. Weeber R., Holm C. Interplay between particle microstructure, network topology and sample shape in magnetic gels – a molecular dynamics simulation study. zrXiv, 2017, art. 1704.06578.
18. Goh S., Wittmann R., Menzel A. M., Löwen H. Classical density functional theory for a two- dimensional isotropic ferrogel model with labeled particles. Physical Review E, 2019, vol. 100, no. 1, pp. 012605.
19. Ivaneyko D., Toshchevikov V. P., Saphiannikova M. Dynamic moduli of magneto-sensitive elastomers: a coarse-grained network model. Soft Matter., 2015, vol. 11, is. 38, pp. 7627–7638.
20. Pessot G., Löwen H., Menzel A. M. Dynamic elastic moduli in magnetic gels: normal modes and linear response. Journal of Chemical Physics, 2016, vol. 145, no. 10, pp. 104904.
21. Goh S., Menzel A. M., Löwen H. Dynamics in a one-dimensional ferrogel model: relaxation, pairing, shock-wave propagation. Physical Chemistry Chemical Physics, 2018, vol. 20, no. 22, pp. 15037– 15051.
22. Dudek M. R., Grabiec B.,Wojciechowski K. W. Molecular dynamics simulations of auxeticferrogel. Review on Advanced Materials Science, 2007, vol. 14, no. 2, pp. 167–173.
23. Ryzhkov A. V., Melenev P. V., Balasoiu M., Raikher Yu. L. Structure organization and magnetic properties of microscale ferrogels: the effect of particle magnetic anisotropy. Journal of Chemical Physics, 2016, vol. 145, no. 7, pp. 074905.
24. Minina E., Sánchez P. A.,Likos C. N., Kantorovich S. S. Studying synthesis confinement effects on the internal structure of nanogels in computer simulations. Journal of Molecular Liquids, 2019, vol. 289, pp. 111066.
25. Zrínyi M., Barsi L., Büki A. Deformation of ferrogels induced by nonuniform magnetic fields. Journal of Chemical Physics, 1996, vol. 104, no. 21, pp. 8750–8756.
26. Blyakhman F. A., Makarova E. B., Fadeyev F. A., Lugovets D. V., Safronov A. P., Shabadrov P. A., Shklyar T. F., Melnikov G. Y., Orue I., Kurlyandskaya G. V. The contribution of magnetic nanoparticles to ferrogel biophysical properties. Nanomaterials, 2019, vol. 9, no. 2, pp. 232.
27. Stephan S., Thol M., Vrabec J., Hasse H. Thermophysical properties of the lennard-jones fluid: database and data assessment. Journal of Chemical Information and Modeling, 2019, vol. 59, no. 10, pp. 4248–4265.
28. Gennes P. G. de. Scalingconcepts in polymer physics. Ithaca, Cornell University Press, 1979. 324 p.
29. Berendsen H. J. C., Postma J. P. M., Gunsteren W. F. van, DiNola A., Haak J. R. Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 1984, vol. 81, no. 8, pp. 3684.
30. Ramanujan R., Lao L. The mechanical behavior of smart magnet-hydrogel composites. Smart Materials and Structures, 2006, vol. 15, no. 4, pp. 952.
31. Ilg P. Stimuli-responsive hydrogels cross-linked by magnetic nanoparticles. Soft Matter., 2013, vol. 9, is. 13, pp. 3465–3468.
32. Schmidt A. M. Thermoresponsive magnetic colloids. Colloid and Polymer Science, 2007, vol. 285, pp. 953–966.
33. Weik F.,Weeber R., Szuttor K., Breitsprecher K., de Graaf J., Kuron M., Landsgesell J., Menke H., Sean D., Holm C. ESPResSo 4.0 – an extensible software package for simulating soft matter systems. The European Physical Journal Special Topics, 2019, vol. 227, pp. 1789–1816.
34. Ivanov A. O., Kuznetsova O. B. Magnetic properties of dense ferrofluids: an influence of interparticle correlations. Physical Review E, 2001, vol. 64, no. 4, pp. 041405.
Review
For citations:
Khardina A.S., Melenev P.V. The Model of the Small Ferrogel Sample with Representation of Polymer Matrix as Lennard-Jones fluid with Elastic Cross-Links. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(4):124-139. (In Russ.) https://doi.org/10.21869/2223-15282022-12-4-124-139