Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

On the Dependence of the Rate of Deactivation of Triplet Excitations of a Number of Molecules on Their Ionization Potential and the Charge of the Nucleus of Heavy Atoms of the Solvent

https://doi.org/10.21869/2223-1528-2024-14-1-76-87

Abstract

Purpose. Establish the nature and reasons for the dependence of the change in the radiative rate constant of deactivation of triplet excitations of a number of molecules, caused by the effect of an external heavy atom, on their ionization potential from the ground state and the energy of the first excited singlet state.

Methods. Kinetic methods were used to determine the rate constant for the deactivation of triplet excitations of organic molecules in solid solutions at 77 K. The solvents were n-heptane (neutral), carbon tetrachloride and benzene bromide (containing heavy chlorine and bromine atoms). The molecules studied were coronene, triphenylene, phenanthrene, naphthalene and biphenyl.

Results. A linear relationship has been established between an increase in the ionization potential, the energy value of the first excited singlet state, and an increase in the change in the rate of radiative deactivation of triplet excitations of the studied molecules in carbon tetrachloride. It is shown that the increase in the change in the radiative deactivation rate of these molecules with an increase in their ionization potential is due to a decrease in the difference between the ionization energies and the first excited singlet state.

Conclusion. The results of the study showed that there is a linear relationship between the increase in the radiative deactivation rate of triplet excitations of the studied molecules and their ionization potential. A linear relationship is also observed between the increase in the rate of radiative deactivation of triplet excitations of these molecules and the first excited singlet state. As the ionization potentials of the molecules under study increase, the difference between the ionization energy and the energy of the first excited singlet state decreases. This is the reason for the increase in the rate of deactivation of triplet excitations of molecules with an increase in their ionization potential.

About the Authors

M. V. Erina
North-Caucasus Federal University
Russian Federation

Marina V. Erina, Candidate of Sciences (Physics and Mathematics), Associate Professor, Associate Professor of the Department of Experimental Physics

1 Pushkin Str., Stavropol 355017



M. I. Deryabin
North-Caucasus Federal University
Russian Federation

Mikhail I. Deryabin, Doctor of Sciences (Physics and Mathematics), Professor, Leading Researcher of the Department of Experimental Physics

1 Pushkin Str., Stavropol 355017



References

1. Kasha M. J. Collisional perturbation of spin-orbital coupling and the mechanism of fluorescence quenching. A Visual Demonstration of the Perturbation. Chem. Phys., 1952, vol. 20, is. 1, рр. 71–74. https://doi.org/10.1063/1.1700199

2. Mak-Glinn S., Adzumi T., Kinosita M. Molekulyarnaya spektroskopiya tripletnogo sostoyaniya [Molecular spectroscopy of the triplet state]. Moscow, Mir Publ., 1972. 448 p.

3. Strek W., Wierzchaczewski M. Is the external heavy atom effect of the spin-orbit coupling nature. Acta Phys. Pol. A, 1981, vol. 60(6), рр. 857–865.

4. Strek W., Wierzchaczewski M. J. External heavy atom effect on radiative spin-forbidden transitions. Chem. Phys., 1981, vol. 58, is. 2, рр. 185–193. https://doi.org/10.1016/0301-0104(81)80055-9

5. Minaev B. F. External heavy-atom effects on radiative singlet-triplet transitions. J. Appl. Spectr., 1985, vol. 43, is. 2, рр. 887–890. https://doi.org/10.1007/BF00660769

6. Minaev B. F., Knuts S., Agren H. On the interpretation of the external heavy atom effect on singlettriplet transitions. Chem. Phys., 1994, vol. 181, рр. 15–28. https://doi.org/10.1016/0301-0104(94)85010-0

7. Baryshnikov G. V., Minaev B. F., Agren H. Theory and calculation of the phosphorescence phenomenon. Chem. Rev., 2017, vol. 117, is. 9, рр. 6500–6537. https://doi.org/10.1021/acs.chemrev.7b00060

8. Sun X., Zhang B., Li X., Trindle C. O., Zhang G. External heavy-atom effect via orbital interactions revealed by single-crystal X-ray diffraction. J. Phys. Chem. A, 2016, vol. 120 (29), рр. 5791–5797. https://doi.org/10.1021/acs.jpca.6b03867

9. Solov’ev K. N., Borisevich E. A. Vnutrimolekulyarnyi effekt tyazhelogo atoma v fotofizike organicheskikh molekul [Intramolecular heavy-atom effect in the photophysics of organic molecules]. Uspekhi fizicheskikh nauk = Physics - Uspekhi, 2005, vol. 48, рр. 231–253. https://doi.org/10.1070/PU2005v048n03ABEH001761

10. McGlynn S. P., Sunseri R., Christodouleas N. External heavy‐atom spin‐orbital coupling effect. I. The nature of the interaction. J. Chem. Phys., 1962, vol. 37, is. 8, рр. 1818–1824. https://doi.org/10.1063/1.1733374

11. Boschi R., Clar E., Schmidt W. Photoelectron spectra of polynuclear aromatics. III. The effect of nonplanarity in sterically overcrowded aromatic hydrocarbons. J. Chem. Phys., 1974, vol. 60, рр. 4406–4418. https://doi.org/10.1063/1.1680919

12. Ruščić B., Kovač B., Klasinc L. Photoelectron spectroscopy of heterocycles. Fluorene analogues. Zeitschrift für Naturforschung, 1978, vol. 33a, рр. 1006–1012. https://doi.org/10.1515/zna-1978-0902

13. Deryabin M. I., Erina M. V., Valyukhov D. P. Vliyanie tyazhelykh atomov na komponenty dubleta spektra fosforestsentsii trifenilena v chetyrekhkhloristom uglerode [Influence of heavy atoms on the components of the phosphorescence spectrum doublet of triphenylene in carbon tetrachloride]. Optika i spektroskopiya = Optics and Spectroscopy, 2021, vol. 129, is. 10, рр. 1092–1094. https://doi.org/10.21883/OS.2021.08.51195.1816-21

14. Korotaeva E. A., Naumova T. M. Vliyanie tyazhelogo atoma rastvoritelya na vibronnuyu strukturu spektra fosforestsentsii difenilensul'fida [Effect of the heavy solvent atom on the vibronic structure of the phosphorescence spectrum of diphenylene sulfide]. Optika i spektroskopiya = Optics and Spectroscopy, 1977, vol. 42, no. 5, рр. 912–919.

15. Teplickaya T. A., Alekseeva T. A., Val'dman M. M. Atlas kvazilineichatykh spektrov lyuminestsentsii aromaticheskikh molekul [Atlas of quasi-line luminescence spectra of aromatic molecules]. Moscow, MGU Publ., 1978. 175 p.

16. Butlar V. A., Grebenshchikov D. M., Solodunov V. V. Nekotorye osobennosti kinetiki zatukhaniya fosforestsentsii trifenilena [Some features of the phosphorescence decay kinetics of triphenylene]. Optika i spektroskopiya = Optics and Spectroscopy, 1965, vol. XVIII, no. 6, рр. 1079–1081.

17. Clar E., Robertson J. M., Schlogl R., Schmidt W. Photoelectron Spectra of Polynuclear Aromatics. 6. Applications to Structural Elucidation: "Circumanthracene". J. Am. Chem. Soc., 1981, vol. 103, is. 6, рр. 1320–1328. https://doi.org/10.1021/ja00396a003

18. Thantu N., Weber P. M. Dependence of two-photon ionization photoelectron spectra on laser coherence bandwidth. Chem. Phys. Lett., 1993, vol. 214, is. 3-4, рр. 276–280. https://doi.org/10.1016/0009-2614(93)85634-z

19. Cockett M. C. R., Ozeki H., Okuyama K., Kimura K. Vibronic coupling in the ground cationic state of naphthalene: A laser threshold photoelectron [zero kinetic energy (ZEKE)‐photoelectron] spectroscopic study. J. Chem. Phys., 1993, vol. 98, is. 10, рр. 7763–7772. https://doi.org/10.1063/1.464584

20. Akiyama I., Li K. C., Le Breton P. R., Fu P. P., Harvey R. G. Ultraviolet photoelectron studies of polycyclic aromatic hydrocarbons. The ground-state electronic structure of aryloxiranes and metabolites of benzo[a]pyrene. J. Phys. Chem., 1979, vol. 83, is. 23, рр. 2997–3003. https://doi.org/10.1021/j100486a012

21. Najbar J., Chodkowska A. External heavy atom effect on the decay of the triplet state of aromatic hydrocarbons. II. The decay functions of the phosphorescence and ESR signals of the triphenylene in the presence of the iodide ions. J. Luminescence, 1975/76, vol. 11, рр. 215–226. https://doi.org/10.1016/0022-2313(75)90016-2

22. Komada S., Yamauchi S., Hirota N. Mechanisms of external heavy atom effects on the lowest excited triplet states: Naphthalene and biphenyl X traps. J. Chem. Phys., 1985, vol. 82, no. 4, 1651–1660. https://doi.org/10.1063/1.448397

23. Deryabin M. I., Erina M. V., Valyuhov D. P. Nekotorye osobennosti spektra i kinetiki fosforestsentsii trifenilena v brombenzole pri 77 K [Some features of the spectrum and kinetics of phosphorescence of triphenylene in bromobenzene at 77 K]. Ekologicheskii vestnik nauchnykh tsentrov ChES = Ekologicheskij vestnik nauchnyh centrov ChES, 2020, vol. 17, no. 3, рр. 56–59. https://doi.org/10.31429/vestnik-17-3-56-59


Review

For citations:


Erina M.V., Deryabin M.I. On the Dependence of the Rate of Deactivation of Triplet Excitations of a Number of Molecules on Their Ionization Potential and the Charge of the Nucleus of Heavy Atoms of the Solvent. Proceedings of the Southwest State University. Series: Engineering and Technology. 2024;14(1):76-87. (In Russ.) https://doi.org/10.21869/2223-1528-2024-14-1-76-87

Views: 222


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)