Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Atomic Force Microscopy of in-situ Structuring During Deformation of Nanofilm Materials

https://doi.org/10.21869/2223-1528-2023-13-1-120-133

Abstract

Purpose of the study. To develop and manufacture a device based on a piezoactuator for mechanical deformation of samples during examination with an atomic force microscope. Study of the evolution of nanostructured surfaces using atomic force microscopy under mechanical stress.

Methods. Measurements of the movement of the piezoactuator by the capacitive method; examination of the surface on a confocal microscope; the formation of the studied films by magnetron sputtering; study of the topography of the surface of samples on an atomic force microscope.

Results. A test model of a device built into an atomic force microscope was made to study the deformation (compression) of samples using a piezoactuator. The capabilities of the device were tested using a confocal microscope. The spatial resolution of the device was achieved, which amounted to D±∆D = 1.071±0.160 µm (accuracy 15%), which made it possible to detect deformation of the surface of the fixed sample. Taking into account the highest temperature of transition to the superconducting state among metals, the choice of niobium as a material for studying structural changes during compression of a magnetron nanofilm on a substrate in the form of a metal plate with high elastic properties, which is characteristic of the HDD sensor head holder, is justified. Studies in the in situ compression mode of a niobium magnetron nanofilm using an atomic force microscope established and described nanoscale changes in the surface structure of a niobium nanofilm under the influence of a piezoactuator.

Conclusion. The tests carried out under the conditions of linear and controlled deformation, combined with nano- and microstructural studies in the in situ mode by atomic force microscopy, showed structural changes of the surface of the magnetron nanofilm from niobium, which indicates the activation of the mechanism of surface aggregation of nanoclusters forming the film.

About the Authors

A. S. Petrov
Southwest State University
Russian Federation

Andrey S. Petrov, Post-Graduate Student of the Department of Nanotechnologies, Microelectro- nics, General and Applied Physics

50 Let Oktyabrya Str. 94, Kursk 305040



A. P. Kuzmenko
Southwest State University
Russian Federation

Alexander P. Kuzmenko, Dr. of Sci. (Physics and Mathematics), Professor, Chief Researcher  of the Regional Center for Nanotechnology

50 Let Oktyabrya Str. 94, Kursk 305040



V. A. Mamontov
Southwest State University
Russian Federation

Vladimir A. Mamontov, Post-Graduate Student of the Department of Nanotechnologies,  Microelectronics, General and Applied Physics

50 Let Oktyabrya Str. 94, Kursk 305040



A. S. Sizov
Southwest State University
Russian Federation

Aleksander S. Sizov, Dr. of Sci. (Physics and Mathematics), Professor, Southwest State  University

50 Let Oktyabrya Str. 94, Kursk 305040



References

1. Stachiv I., Alarcon E., Lamac M. Shape memory alloys and polymers for MEMS/NEMS applications: review on recent findings and challenges in design, preparation, and characterization. Metals, 2021, vol. 11, рр. 415.

2. Tambe S., Bhushan B. In situ study of nano-cracking in multilayered magnetic tapes under monotonic and fatigue loading using an AFM Nikhil. Ultramicroscopy, 2004, vol. 100, рр. 359– 373.

3. Huang An. R., Mineart L., Dong K. P., Spontak Y., Gubbins R. J. Adhesion and friction in polymer films on solid substrates: conformal sites analysis and corresponding surface measurements. Soft Matter., 2017, vol. 13, рр. 3492−3505.

4. Braun O. M., Naumovets A. G. Nanotribology microscopic mechanisms of friction. Surf. Sci. Rep., 2006, vol. 60, рр. 79−158.

5. Déprés C. F. R. & M. C. F. C. Low-strain fatigue in 316L steel surface grains: a three dimension discrete dislocation dynamics modelling of the early cycles persistent slip markings and micro-crack nucleation little. Philos. Mag., 2006, vol. 86, рр. 79–97.

6. Payam A. F., Payton O., Picco L., Moore S., Martin T., Warren A. D., Mostafavi M., Knowles D. Development of fatigue testing system for in-situ observation of stainless steel 316 by HSAFM & SEM. International Journal of Fatigue, 2019, vol. 127, рр. 1–9.

7. Thomas C., Seguela R., Detrez F., Miri V., Vanmansart C. Plastic deformation of spherulitic semi-crystalline polymers: an in situ afm study of polybutene under tensile drawing. Polymer, 2009, vol. 50, рр. P. 3714–3723.

8. Oderkerk J., Schaetzen G. de, Goderis B., Hellemans L., Groeninckx G. Micromechanical deformation and recovery processes of nylon-6 rubber thermoplastic vulcanizates as studied by atomic force microscopy and transmission electron microscopy. Macromolecules, 2002, vol. 35, рр. 6623–6629.

9. Hicks W., Brodsky D. O., Yelland E. A., Gibbs A. S., Bruin J. A. N., Barber M. E., Edkins S. D., Nishimura K., Yonezawa S., Maeno Y., Mackenzie A. P. Strong increase of T Sr2RuO4 under both tensile and compressive strain. Science, 2014, vol. 344, рр. 283–285.

10. Taniguchi H., Nishimura K., Goh S. K., Yonezawa S., Maeno Y. Higher-T c superconducting phase in Sr2RuO4 induced by in-plane uniaxial pressure. J. Phys. Soc. Jpn., 2015, vol. 84, рр. 153–181.

11. Bulygin F. V., Prilepko M. Yu. Kalibrovka datchikov peremennykh sil deformatsionnym metodom [Calibration of variable force sensors by the deformation method]. Izmeritel'naya tekhnika = Measurement technique, 2019, no. 6, рр. 15–19.

12. Garg N., Sharma O., Kumar A., Schiefer M. A novel approach for realization of primary vibration calibration standard by homodyne laser interferometer in frequency range of 0.1 Hz to 20 kHz. Measurement, 2012, vol. 45, no. 8, рр. 1941–1950.

13. Kuzmenko A. P., Tant Sin Win, Myo Ming Tan, Nau Dint. Magnetronnye odno- i mul'tisloinye nanoplenki iz Nb, C i Si [Magnetron single- and multilayer nanofilms from Nb, C and Si]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technology, 2019, vol. 9, no. 4, рр. 30– 52.

14. Prista G., Gabáni S., Orendac M., Komanicky V., Gazo E. Study of niobium thin films under pressure. Acta Physica Polonica A, 2014, vol. 126, рр. 346–347.

15. Angélica G. F., Harvi A. C., Daniel E. R., Elisabeth R. P., Wencel C. Correlation between stoichiometry of NbxNy coatings produced by DC magnetron sputtering with electrical conducti- vity and the hall coefficient. Coating, 2019, vol. 196, рр. 1–10.

16. Zou S., Bai R., Hernandez G. A., Gupta V., Cao Y., Sellers J. A., Ellis C. D., Hamil- ton M. C. Influence of fatigue and bending strain on critical currents of niobium superconducting flexible cables containing Ti and Cu interfacial layers. IEEE Transactions on Applied Superconductivity, 2017, vol. 27, no. 4, рр. 6000605(5).

17. Ivashchenko V. I., Scrynskyy P. L., Lytvyn O. S., Rogoz V. M., Sobol O. V., Kuzmen- ko A. P., Komsta H., Karvat C. Investigation of NbN and Nb–Si–N coatings deposited by magnetron sputtering. Acta physica polonica A., 2015, vol. 128, no. 5, рр. 949–952.

18. Chien J. T., Glen A. P., Cheng C. J., Fang M. T. Optical properties and residual stress in Nb-Si composite films prepared by magnetron sputtering. Optical Society of America, 2015, vol. 54, no. 4, рр. 959–965.

19. Taniguchi H., Nishimura K., Goh S. K., Yonezawa S., Maeno Y. Higher-Tc superconducting phase in Sr2RuO4 induced by in-plane uniaxial pressure. J. Phys. Soc. Jpn., 2015, vol. 84, рр. 153–181.

20. Kuzmenko A. P., Nau Dint, Kuzko A. E., Myo Ming Tan, Tant Sin Win, A. I. Nanorazmernaya kharakterizatsiya metallicheskikh magnetronnykh nanoplenochnykh mul'tisloev iz Cr, Cu, Al, Ni na sitalle [Nanoscale characterization of metal magnetron nanofilm multilayers of Cr, Cu, Kolpakov Al, Ni on glass-ceramic]. Izvestiya vysshikh uchebnykh zavedenii. Materialy elektronnoi tekhniki = Izvestiya universities. Materials of electronic engineering, 2016, vol. 19, no. 3, рр. 195–203.

21. Kuz’menko A. P., Khokhlov N. A., Lin K. K., Myo M. T., Petrov A. S. Ab initio calculations of aluminium clustering on aluminium surfaces. Journal of Physics: Conf. Series, 2020, vol. 1455, рр. 012001-1 – 012001-5.


Review

For citations:


Petrov A.S., Kuzmenko A.P., Mamontov V.A., Sizov A.S. Atomic Force Microscopy of in-situ Structuring During Deformation of Nanofilm Materials. Proceedings of the Southwest State University. Series: Engineering and Technology. 2023;13(1):120-133. (In Russ.) https://doi.org/10.21869/2223-1528-2023-13-1-120-133

Views: 179


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)