Dynamics of Active Bubbles in a Magnetic Fluid in an Inhomogeneous Magnetic Field
https://doi.org/10.21869/2223-1528-2023-13-1-102-119
Abstract
Purpose. To develop a method for generating active bubbles and droplets containing a non-magnetic core and a shell of magnetic fluid, as well as to study the influence of the magnetic field on their dynamics.
Methods. The experiments were carried out on an experimental setup for studying the dynamics of droplet and bubble flow in magnetic liquids, developed based on known methods. An annular permanent magnet placed on top of an electromagnet was used as a source of an inhomogeneous magnetic field. A permanent magnet was used to study the effect of an external magnetic field on the dynamics of bubbles or droplets. The supply of the non-magnetic phase into the channel was carried out using a syringe pump. The dynamics of droplet and bubble flows were recorded by the passing light of the illuminator using a high-speed camera (Nikon 1).
Results. Studies of the dynamics of active bubbles and droplets formed in an inhomogeneous field of an annular magnet were carried out by injection a non-magnetic phase into a magnetic liquid. The influence of the magnetic field configuration on the velocity, acceleration, and size of active droplets has been studied. The phenomenon of selforganization of bubbles on the surface of the oil layer and the influence of an external magnetic field on the resulting inclusions are shown.
Conclusion. During the experiment, it was found that the separation of non-magnetic droplets and bubbles occurs from a levitating non-magnetic volume. The size and dynamics of bubbles and droplets can be controlled using an external magnetic field. As the current increases, the droplet velocity increases, the acceleration decreases, and the size decrease. This is due to a change in the configuration of the field created by the combined magnetic field source. With the phenomenon of self-organization of non-magnetic bubbles covered with a magnetic shell, it can be noticed that their diameter decreases with increasing concentration of magnetic fluid and the thickness of the shell increases. The application of a magnet in the direction of the bubbles makes the magnetic shell of the bubbles thinner, which leads to further destruction of the bubbles in cases when they are covered with a shell of low-concentrated MF. In the case of bubbles covered with a shell of concentrated magnetic liquids, they do not collapse.
Keywords
About the Authors
E. A. SokolovRussian Federation
Evgeny A. Sokolov, Post-Graduate Student of the Department of Nanotechnology, Micro- electronics, General and Applied Physics
50 Let Oktyabrya Str. 94, Kursk 305040
D. A. Kalyuzhnaya
Russian Federation
Daria A. Kalyuzhnaya, Undergraduate of the Department of Nanotechnology, Microelectronics, General and Applied Physics
50 Let Oktyabrya Str. 94, Kursk 305040
A. G. Reks
Belarus
Alexander G. Reks, Dr. of Sci. (Physics and Mathematics), Professor, Professor of the UNESCO Chair "Energy Saving and Renewable Energy Sources"
65 Nezavisimosti Ave., Minsk 220013
V. I. Kalenchuk
Russian Federation
Valery I. Kalenchuk, Laboratory Assistant, Student of the Department of Nanotechnology, General and Applied Physics
50 Let Oktyabrya Str. 94, Kursk 305040
G. A. Zhukov
Russian Federation
Grigory A. Zhukov, Laboratory Assistant, Student of the Department of Nanotechnology, General and Applied Physics
50 Let Oktyabrya Str. 94, Kursk 305040
R. E. Politov
Russian Federation
Roman E. Politov, Laboratory Assistant, Student of the Department of Nanotechnology, General and Applied Physics
50 Let Oktyabrya Str. 94, Kursk 305040
P. A. Ryapolov
Russian Federation
Petr A. Ryapolov, Dr. of Sci. (Physics and Mathematics), Associate Professor, Dean of the Faculty of Natural Sciences
50 Let Oktyabrya Str. 94, Kursk 305040
References
1. Erb R. M., Martin J. J., Soheilian, R., Pan C., Barber J. R. Actuating soft matter with magnetic torque. Adv. Funct. Mater., 2016, vol. 26, pp. 3859–3880. https://doi.org/10.1002/adfm.201504699
2. Wu S., Hu W., Ze Q., Sitti M., Zhao R. Multifunctional magnetic soft composites: A review. Multifunct. Mater., 2020, vol. 3, pp. 042003. https://doi.org/10.1088/2399-7532/abcb0c
3. Ku K. H., Li J., Yoshinaga K., Swager T. M. Dynamically reconfigurable, multifunctional emulsions with controllable structure and movement. Adv. Mater., 2019, vol. 31, pp. 1905569. https://doi.org/10.1002/adma.201905569
4. Vékás L. Ferrofluids and magnetorheological fluids. Advances in Science and Technology, 2008, vol. 54, pp. 127–136. https://doi.org/10.4028/www.scientific.net/AST.54.127
5. Torres-Díaz I., Rinaldi C. Recent progress in ferrofluids research: Novel applications of magnetically controllable and tunable fluids. Soft Matter., 2014, vol. 10, pp. 8584–8602. https://doi.org/10.1039/C4SM01308E
6. Genc S., Derin B. Synthesis and rheology of ferrofluids: A review. Curr. Opin. Chem. Eng., 2014, vol. 3, pp. 118–124. https://doi.org/10.1016/j.coche.2013.12.006
7. Joseph A., Mathew S. Ferrofluids: Synthetic strategies, stabilization, physicochemical features, characterization, and applica tions. ChemPlusChem, 2014, no. 79, pp. 1382–1420. https://doi.org/10.1002/cplu.201402202
8. Zhang X., Sun L., Yu Y., Zhao Y. Flexible ferrofluids: Design and applications. Adv. Mater., 2019, vol. 31, pp. 1903497. https://doi.org/10.1002/adma.201903497
9. Socoliuc V., Avdeev M. V., Kuncser V., Turcu R., Tombácz E., Vekas L. Ferrofluids and bio-ferrofluids: Looking back andstepping forward. Nanoscale, 2022, vol. 14, pp. 4786–4886. https://doi.org/10.1039/D1NR05841J
10. Rosensweig R. E. Ferrohydrodynamics. North Chelmsford, MA, USA, Courier Corporation. 1985. 348 p.
11. Berkovsky B. M., Medvedev V. F., Krakov M. S. Magnetic fluids: engineering applications. Oxford, UK: Oxford University Press, 1993. 243 p.
12. Papell S. S. Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles. Luxembourg, MPK, 1965.
13. Colloidal magnetic fluids: basics, development and application of ferrofluids; S. Odenbach ed. Lect. Notes Phys. 763. Berlin/Heidelberg, Germany, Springer, 2009. 429 p. https://doi.org/10.1007/978-3-540-85387-9
14. Yerin C. V. Particles size distribution in diluted magnetic fluids. J. Magn. Magn. Mater., 2017, vol. 431, pp. 27–29. https://doi.org/10.1016/j.jmmm.2016.09.122
15. Cao Q., Han X., Li, L. Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic ap plications: Magnet systems and manipulation mechanisms. Lab. A Chip., 2014, V. 14, pp. 2762–2777. https://doi.org/10.1039/C4LC00367E
16. Shel’deshova E. V., Ryapolov P. A, Reks A. G., TrepachevA. V. Dinamika magnitnykh zhidkostei i bidispersnykh magnitnykh sistem pri kolebatel'nykh sdvigakh [Dynamics of magnetic fluids and bidisperse magnetic systems under oscillatory shifts]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2022, vol. 12, no. 3, pp. 130–146. https://doi.org/10.21869/2223-1528-2022-12-3-130-146
17. Ivanov A. S., Pshenichnikov A. F., Khokhryakova C. A. Floating of solid non-magnetic bodies in magnetic fluids: Compre hensive analysis in the framework of inductive approach. Phys. Fluids, 2020, vol. 32, pp. 112007. https://doi.org/10.1063/5.0024195
18. Zakinyan A. R., Zakinyan A. A. Rotating field induced torque on ferrofluid emulsion with deformable dispersed phase mi crodrops. Sens. Actuators A Phys., 2020, vol. 314, pp. 112347. https://doi.org/10.1016/j.sna.2020.112347
19. Bohara R. A., Thorat N. D., Pawar S. H. Role of functionalization: Strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv., 2016, vol. 6, pp. 43989–44012. https://doi.org/10.1039/C6RA02129H
20. Ali A., Shah T., Ullah R., Zhou P., Guo M., Ovais M., Rui Y. Review on recent progress in magnetic nanoparticles: Synthesis, characterization, and diverse applications. Front. Chem., 2021, vol. 9, pp. 629054. https://doi.org/10.3389/fchem.2021.629054
21. Kianfar E. Magnetic nanoparticles in targeted drug delivery: A review. J. Supercond. Nov. Magn., 2021, vol. 34, pp. 1709–1735. https://doi.org/10.1007/s10948-021-05932-9
22. Shah A., Aftab S., Nisar J., Ashiq M. N., Iftikhar F. J. Nanocarriers for targeted drug delivery. J. Drug Deliv. Sci. Technol., 2021, vol. 62, pp. 102426. https://doi.org/10.1016/j.jddst.2021.102426
23. Li X., Li W.,Wang M., Liao Z. Magnetic nanoparticles for cancer theranostics: Advances and prospects. J. Control Release, 2021, vol. 335, pp. 437–448. https://doi.org/10.1016/j.jconrel.2021.05.042
24. Chouhan R. S., Horvat M., Ahmed J., Alhokbany N., Alshehri S. M., Gandhi S. Magnetic nanoparticles — A multifunctional potential agent for diagnosis and therapy. Cancers, 2021, vol. 13, pp. 2213. https://doi.org/10.3390/cancers13092213
25. Liu X., Tian Y., Jiang L. Manipulating dispersions of magnetic nanoparticles. Nano Lett., 2021, vol. 21, pp. 2699–2708. https://doi.org/10.1021/acs.nanolett.0c04757
26. Martínez-Pedrero F. Static and dynamic behavior of magnetic particles at fluid interfaces. Adv. Colloid Interface Sci., 2020, vol. 284, pp. 102233. https://doi.org/10.1016/j.cis.2020.102233
27. Zentner C. A., Concellón A., Swager T. M. Controlled movement of complex double emulsions via interfacially confined magnetic nanoparticles. ACS Cent. Sci., 2020, vol. 6, pp. 1460–1466. https://doi.org/10.1021/acscentsci.0c00686
28. Li X., Yu P., Niu X., Yamaguchi H., Li D. Non-contact manipulation of nonmagnetic materials by using a uniform magnetic field: Experiment and simulation. J. Magn. Magn. Mater., 2020, vol. 497, pp. 165957. https://doi.org/10.1016/j.jmmm.2019.165957.
29. Dunne P., Adachi T., Dev A. A., Sorrenti A., Giacchetti L., Bonnin A., Hermans T. M. Liquid flow and control without solid walls. Nature, 2020, vol. 581, pp. 58–62. https://doi.org/10.5281/zenodo.3603029
30. Zhou Y., Xuan X. Diamagnetic particle separation by shape in ferrofluids. Appl. Phys. Lett., 2016, vol. 109, pp. 102405. https://doi.org/10.1063/1.4962638
31. Kalyuzhnaya D. A., Sokolov E. A., Vasilyeva A. O., Sutyrina I. Y., Shel’deshova E. V., Ryapolov P. A. Dinamicheskoe povedenie gazovykh puzyr'kov i kapel'v magnitnoi zhidkosti v mikrozhidkostnykh chipakh razlichnoi konfiguratsii v neodnorodnom magnitnom pole [Dynamic behavior of gas bubbles and droplets in a magnetic liquid in microfluidic chips of various configuration in an inhomogeneous magnetic field]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2022, vol. 12, no. 4, pp. 152–167. https://doi.org/10.21869/2223-1528-2022-12-4-152-167
32. Polunin V. M., Ryapolov P. A., Ryabtsev K. S., Kobelev N. S., Shabanova I. A., Yushin V. V., Postnikov E. B. Elasticity of an air cavity in a magnetic fluid on an annular magnet segment with changing magnetic field sign. Russ. Phys. J., 2018, vol. 61, pp. 1347–1357. https://doi.org/10.1007/s11182-018-1540-1
33. Ryapolov P. A., Sokolov E. A., Postnikov E. B. Behavior of a gas bubble separating from a cavity formed in magnetic fluid in an inhomogeneous magnetic field. J. Magn. Magn. Mater., 2022, vol. 549, pp. 169067. https://doi.org/10.1016/j.jmmm.2022.169067
34. Ryapolov P. A., Sokolov E. A. Dinamika nemagnitnykh zhidkikh i gazoobraznykh vklyuchenii v magnitnoi zhidkosti v magnitnom pole kol'tsevogo magnita [Dynamics of Nonmagnetic Liquid and Gaseous Inclusions in a magnetic Fluidin the Magnetic Field of a Ring Magnet]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2021, vol. 11, no. 1, pp. 105–116.
35. Battat S., Weitz, D. A., Whitesides G. M. Nonlinear phenomena in microfluidics. Chem. Rev., 2022, vol. 122, pp. 6921–6937. https://doi.org/10.1021/acs.chemrev.1c00985
36. Huang G., Li M., Yang Q., Li Y., Liu H., Yang H., Xu F. Magnetically actuated droplet manipulation and its potential bio medical applications. ACS Appl. Mater. Interfaces, 2017, vol. 9, 1155–1166. https://doi.org/10.1021/acsami.6b09017
37. Wu X., Streubel R., Liu X., Kim P. Y., Chai Y., Hu Q., Russell T. P. Ferromagnetic liquid droplets with adjustable magnetic properties. Proc. Natl. Acad. Sci. USA, 2021, vol. 118, pp. e2017355118. https://doi.org/10.1073/pnas.201735511
38. Liu X., Kent N., Ceballos A., Streubel R., Jiang Y., Chai Y., Russell T. P. Reconfigurable ferromagnetic liquid droplets. Science, 2019, vol. 365, pp. 264–267. https://doi.org/10.1126/science.aaw8719
39. Li Q. Z., Lu Z. L., Zhou D., Niu X. D., Guo T. Q., Du B. C., Li Y. Magnetic field-induced self-assembly of multiple nonmagnetic bubbles inside ferrofluid. Phys. Fluids, 2021, vol. 33, pp. 103307. https://doi.org/10.1063/5.0067426
40. Fan X., Dong X., Karacakol A. C., Xie H., Sitti M. Reconfigurable multifunctional ferrofluid droplet robots. Proc. Natl. Acad. Sci. USA, 2020, vol. 117, рр. 27916–27926. https://doi.org/10.1073/pnas.2016388117
41. Wu J., Pei L., He X., Cui Y., Xuan S., Gong, X. Study on nonlinear magnetic droplets in a flow-focusing generator. Appl. Phys. Lett. 2019, vol. 115, pp. 031903. https://doi.org/10.1063/1.5104296
42. Zhang Y., Jiang S., Hu Y., Wu T., Zhang Y., Li H., Chu J. Reconfigurable magnetic liquid metal robot for high-performance droplet manipulation. Nano Lett., 2022, vol. 22, pp. 2923–2933. https://doi.org/10.1021/acs.nanolett.2c00100
43. Kichatov B., Korshunov A., Sudakov V., Petrov O., Gubernov V., Korshunova E., Kiverin A. Magnetic Nanomotors in Emulsions for Locomotion of Microdroplets. ACS Appl. Mater. Interfaces, 2022, vol. 4, pp. 10976–10986. https://doi.org/10.1021/acsami.1c23910
Review
For citations:
Sokolov E.A., Kalyuzhnaya D.A., Reks A.G., Kalenchuk V.I., Zhukov G.A., Politov R.E., Ryapolov P.A. Dynamics of Active Bubbles in a Magnetic Fluid in an Inhomogeneous Magnetic Field. Proceedings of the Southwest State University. Series: Engineering and Technology. 2023;13(1):102-119. (In Russ.) https://doi.org/10.21869/2223-1528-2023-13-1-102-119