Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Dynamics of Active Bubbles in a Magnetic Fluid in an Inhomogeneous Magnetic Field

https://doi.org/10.21869/2223-1528-2023-13-1-102-119

Abstract

Purpose. To develop a method for generating active bubbles and droplets containing a non-magnetic core and a shell of magnetic fluid, as well as to study the influence of the magnetic field on their dynamics.

Methods. The experiments were carried out on an experimental setup for studying the dynamics of droplet and bubble flow in magnetic liquids, developed based on known methods. An annular permanent magnet placed on top of an electromagnet was used as a source of an inhomogeneous magnetic field. A permanent magnet was used to study the effect of an external magnetic field on the dynamics of bubbles or droplets. The supply of the non-magnetic phase into the channel was carried out using a syringe pump. The dynamics of droplet and bubble flows were recorded by the passing light of the illuminator using a high-speed camera (Nikon 1).

Results. Studies of the dynamics of active bubbles and droplets formed in an inhomogeneous field of an annular magnet were carried out by injection a non-magnetic phase into a magnetic liquid. The influence of the magnetic field configuration on the velocity, acceleration, and size of active droplets has been studied. The phenomenon of selforganization of bubbles on the surface of the oil layer and the influence of an external magnetic field on the resulting inclusions are shown.

Conclusion. During the experiment, it was found that the separation of non-magnetic droplets and bubbles occurs from a levitating non-magnetic volume. The size and dynamics of bubbles and droplets can be controlled using an external magnetic field. As the current increases, the droplet velocity increases, the acceleration decreases, and the size decrease. This is due to a change in the configuration of the field created by the combined magnetic field source. With the phenomenon of self-organization of non-magnetic bubbles covered with a magnetic shell, it can be noticed that their diameter decreases with increasing concentration of magnetic fluid and the thickness of the shell increases. The application of a magnet in the direction of the bubbles makes the magnetic shell of the bubbles thinner, which leads to further destruction of the bubbles in cases when they are covered with a shell of low-concentrated MF. In the case of bubbles covered with a shell of concentrated magnetic liquids, they do not collapse.

About the Authors

E. A. Sokolov
Southwest State University
Russian Federation

Evgeny A. Sokolov, Post-Graduate Student  of the Department of Nanotechnology, Micro- electronics, General and Applied Physics

50 Let Oktyabrya Str. 94, Kursk 305040



D. A. Kalyuzhnaya
Southwest State University
Russian Federation

Daria A. Kalyuzhnaya, Undergraduate of the Department of Nanotechnology, Microelectronics, General and Applied Physics

50 Let Oktyabrya Str. 94, Kursk 305040



A. G. Reks
Belarusian National Technical University
Belarus

Alexander G. Reks, Dr. of Sci. (Physics and Mathematics), Professor, Professor of the UNESCO Chair "Energy Saving and Renewable Energy Sources"

65 Nezavisimosti Ave., Minsk 220013



V. I. Kalenchuk
Southwest State University
Russian Federation

Valery I. Kalenchuk, Laboratory Assistant, Student of the Department of Nanotechnology, General and Applied Physics

50 Let Oktyabrya Str. 94, Kursk 305040



G. A. Zhukov
Southwest State University
Russian Federation

Grigory A. Zhukov, Laboratory Assistant, Student of the Department of Nanotechnology, General and Applied Physics

50 Let Oktyabrya Str. 94, Kursk 305040



R. E. Politov
Southwest State University
Russian Federation

Roman E. Politov, Laboratory Assistant, Student of the Department of Nanotechnology, General  and Applied Physics

50 Let Oktyabrya Str. 94, Kursk 305040



P. A. Ryapolov
Southwest State University
Russian Federation

Petr A. Ryapolov, Dr. of Sci. (Physics and Mathematics), Associate Professor, Dean of the Faculty of Natural Sciences

50 Let Oktyabrya Str. 94, Kursk 305040



References

1. Erb R. M., Martin J. J., Soheilian, R., Pan C., Barber J. R. Actuating soft matter with magnetic torque. Adv. Funct. Mater., 2016, vol. 26, pp. 3859–3880. https://doi.org/10.1002/adfm.201504699

2. Wu S., Hu W., Ze Q., Sitti M., Zhao R. Multifunctional magnetic soft composites: A review. Multifunct. Mater., 2020, vol. 3, pp. 042003. https://doi.org/10.1088/2399-7532/abcb0c

3. Ku K. H., Li J., Yoshinaga K., Swager T. M. Dynamically reconfigurable, multifunctional emulsions with controllable structure and movement. Adv. Mater., 2019, vol. 31, pp. 1905569. https://doi.org/10.1002/adma.201905569

4. Vékás L. Ferrofluids and magnetorheological fluids. Advances in Science and Technology, 2008, vol. 54, pp. 127–136. https://doi.org/10.4028/www.scientific.net/AST.54.127

5. Torres-Díaz I., Rinaldi C. Recent progress in ferrofluids research: Novel applications of magnetically controllable and tunable fluids. Soft Matter., 2014, vol. 10, pp. 8584–8602. https://doi.org/10.1039/C4SM01308E

6. Genc S., Derin B. Synthesis and rheology of ferrofluids: A review. Curr. Opin. Chem. Eng., 2014, vol. 3, pp. 118–124. https://doi.org/10.1016/j.coche.2013.12.006

7. Joseph A., Mathew S. Ferrofluids: Synthetic strategies, stabilization, physicochemical features, characterization, and applica tions. ChemPlusChem, 2014, no. 79, pp. 1382–1420. https://doi.org/10.1002/cplu.201402202

8. Zhang X., Sun L., Yu Y., Zhao Y. Flexible ferrofluids: Design and applications. Adv. Mater., 2019, vol. 31, pp. 1903497. https://doi.org/10.1002/adma.201903497

9. Socoliuc V., Avdeev M. V., Kuncser V., Turcu R., Tombácz E., Vekas L. Ferrofluids and bio-ferrofluids: Looking back andstepping forward. Nanoscale, 2022, vol. 14, pp. 4786–4886. https://doi.org/10.1039/D1NR05841J

10. Rosensweig R. E. Ferrohydrodynamics. North Chelmsford, MA, USA, Courier Corporation. 1985. 348 p.

11. Berkovsky B. M., Medvedev V. F., Krakov M. S. Magnetic fluids: engineering applications. Oxford, UK: Oxford University Press, 1993. 243 p.

12. Papell S. S. Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles. Luxembourg, MPK, 1965.

13. Colloidal magnetic fluids: basics, development and application of ferrofluids; S. Odenbach ed. Lect. Notes Phys. 763. Berlin/Heidelberg, Germany, Springer, 2009. 429 p. https://doi.org/10.1007/978-3-540-85387-9

14. Yerin C. V. Particles size distribution in diluted magnetic fluids. J. Magn. Magn. Mater., 2017, vol. 431, pp. 27–29. https://doi.org/10.1016/j.jmmm.2016.09.122

15. Cao Q., Han X., Li, L. Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic ap plications: Magnet systems and manipulation mechanisms. Lab. A Chip., 2014, V. 14, pp. 2762–2777. https://doi.org/10.1039/C4LC00367E

16. Shel’deshova E. V., Ryapolov P. A, Reks A. G., TrepachevA. V. Dinamika magnitnykh zhidkostei i bidispersnykh magnitnykh sistem pri kolebatel'nykh sdvigakh [Dynamics of magnetic fluids and bidisperse magnetic systems under oscillatory shifts]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2022, vol. 12, no. 3, pp. 130–146. https://doi.org/10.21869/2223-1528-2022-12-3-130-146

17. Ivanov A. S., Pshenichnikov A. F., Khokhryakova C. A. Floating of solid non-magnetic bodies in magnetic fluids: Compre hensive analysis in the framework of inductive approach. Phys. Fluids, 2020, vol. 32, pp. 112007. https://doi.org/10.1063/5.0024195

18. Zakinyan A. R., Zakinyan A. A. Rotating field induced torque on ferrofluid emulsion with deformable dispersed phase mi crodrops. Sens. Actuators A Phys., 2020, vol. 314, pp. 112347. https://doi.org/10.1016/j.sna.2020.112347

19. Bohara R. A., Thorat N. D., Pawar S. H. Role of functionalization: Strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv., 2016, vol. 6, pp. 43989–44012. https://doi.org/10.1039/C6RA02129H

20. Ali A., Shah T., Ullah R., Zhou P., Guo M., Ovais M., Rui Y. Review on recent progress in magnetic nanoparticles: Synthesis, characterization, and diverse applications. Front. Chem., 2021, vol. 9, pp. 629054. https://doi.org/10.3389/fchem.2021.629054

21. Kianfar E. Magnetic nanoparticles in targeted drug delivery: A review. J. Supercond. Nov. Magn., 2021, vol. 34, pp. 1709–1735. https://doi.org/10.1007/s10948-021-05932-9

22. Shah A., Aftab S., Nisar J., Ashiq M. N., Iftikhar F. J. Nanocarriers for targeted drug delivery. J. Drug Deliv. Sci. Technol., 2021, vol. 62, pp. 102426. https://doi.org/10.1016/j.jddst.2021.102426

23. Li X., Li W.,Wang M., Liao Z. Magnetic nanoparticles for cancer theranostics: Advances and prospects. J. Control Release, 2021, vol. 335, pp. 437–448. https://doi.org/10.1016/j.jconrel.2021.05.042

24. Chouhan R. S., Horvat M., Ahmed J., Alhokbany N., Alshehri S. M., Gandhi S. Magnetic nanoparticles — A multifunctional potential agent for diagnosis and therapy. Cancers, 2021, vol. 13, pp. 2213. https://doi.org/10.3390/cancers13092213

25. Liu X., Tian Y., Jiang L. Manipulating dispersions of magnetic nanoparticles. Nano Lett., 2021, vol. 21, pp. 2699–2708. https://doi.org/10.1021/acs.nanolett.0c04757

26. Martínez-Pedrero F. Static and dynamic behavior of magnetic particles at fluid interfaces. Adv. Colloid Interface Sci., 2020, vol. 284, pp. 102233. https://doi.org/10.1016/j.cis.2020.102233

27. Zentner C. A., Concellón A., Swager T. M. Controlled movement of complex double emulsions via interfacially confined magnetic nanoparticles. ACS Cent. Sci., 2020, vol. 6, pp. 1460–1466. https://doi.org/10.1021/acscentsci.0c00686

28. Li X., Yu P., Niu X., Yamaguchi H., Li D. Non-contact manipulation of nonmagnetic materials by using a uniform magnetic field: Experiment and simulation. J. Magn. Magn. Mater., 2020, vol. 497, pp. 165957. https://doi.org/10.1016/j.jmmm.2019.165957.

29. Dunne P., Adachi T., Dev A. A., Sorrenti A., Giacchetti L., Bonnin A., Hermans T. M. Liquid flow and control without solid walls. Nature, 2020, vol. 581, pp. 58–62. https://doi.org/10.5281/zenodo.3603029

30. Zhou Y., Xuan X. Diamagnetic particle separation by shape in ferrofluids. Appl. Phys. Lett., 2016, vol. 109, pp. 102405. https://doi.org/10.1063/1.4962638

31. Kalyuzhnaya D. A., Sokolov E. A., Vasilyeva A. O., Sutyrina I. Y., Shel’deshova E. V., Ryapolov P. A. Dinamicheskoe povedenie gazovykh puzyr'kov i kapel'v magnitnoi zhidkosti v mikrozhidkostnykh chipakh razlichnoi konfiguratsii v neodnorodnom magnitnom pole [Dynamic behavior of gas bubbles and droplets in a magnetic liquid in microfluidic chips of various configuration in an inhomogeneous magnetic field]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2022, vol. 12, no. 4, pp. 152–167. https://doi.org/10.21869/2223-1528-2022-12-4-152-167

32. Polunin V. M., Ryapolov P. A., Ryabtsev K. S., Kobelev N. S., Shabanova I. A., Yushin V. V., Postnikov E. B. Elasticity of an air cavity in a magnetic fluid on an annular magnet segment with changing magnetic field sign. Russ. Phys. J., 2018, vol. 61, pp. 1347–1357. https://doi.org/10.1007/s11182-018-1540-1

33. Ryapolov P. A., Sokolov E. A., Postnikov E. B. Behavior of a gas bubble separating from a cavity formed in magnetic fluid in an inhomogeneous magnetic field. J. Magn. Magn. Mater., 2022, vol. 549, pp. 169067. https://doi.org/10.1016/j.jmmm.2022.169067

34. Ryapolov P. A., Sokolov E. A. Dinamika nemagnitnykh zhidkikh i gazoobraznykh vklyuchenii v magnitnoi zhidkosti v magnitnom pole kol'tsevogo magnita [Dynamics of Nonmagnetic Liquid and Gaseous Inclusions in a magnetic Fluidin the Magnetic Field of a Ring Magnet]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2021, vol. 11, no. 1, pp. 105–116.

35. Battat S., Weitz, D. A., Whitesides G. M. Nonlinear phenomena in microfluidics. Chem. Rev., 2022, vol. 122, pp. 6921–6937. https://doi.org/10.1021/acs.chemrev.1c00985

36. Huang G., Li M., Yang Q., Li Y., Liu H., Yang H., Xu F. Magnetically actuated droplet manipulation and its potential bio medical applications. ACS Appl. Mater. Interfaces, 2017, vol. 9, 1155–1166. https://doi.org/10.1021/acsami.6b09017

37. Wu X., Streubel R., Liu X., Kim P. Y., Chai Y., Hu Q., Russell T. P. Ferromagnetic liquid droplets with adjustable magnetic properties. Proc. Natl. Acad. Sci. USA, 2021, vol. 118, pp. e2017355118. https://doi.org/10.1073/pnas.201735511

38. Liu X., Kent N., Ceballos A., Streubel R., Jiang Y., Chai Y., Russell T. P. Reconfigurable ferromagnetic liquid droplets. Science, 2019, vol. 365, pp. 264–267. https://doi.org/10.1126/science.aaw8719

39. Li Q. Z., Lu Z. L., Zhou D., Niu X. D., Guo T. Q., Du B. C., Li Y. Magnetic field-induced self-assembly of multiple nonmagnetic bubbles inside ferrofluid. Phys. Fluids, 2021, vol. 33, pp. 103307. https://doi.org/10.1063/5.0067426

40. Fan X., Dong X., Karacakol A. C., Xie H., Sitti M. Reconfigurable multifunctional ferrofluid droplet robots. Proc. Natl. Acad. Sci. USA, 2020, vol. 117, рр. 27916–27926. https://doi.org/10.1073/pnas.2016388117

41. Wu J., Pei L., He X., Cui Y., Xuan S., Gong, X. Study on nonlinear magnetic droplets in a flow-focusing generator. Appl. Phys. Lett. 2019, vol. 115, pp. 031903. https://doi.org/10.1063/1.5104296

42. Zhang Y., Jiang S., Hu Y., Wu T., Zhang Y., Li H., Chu J. Reconfigurable magnetic liquid metal robot for high-performance droplet manipulation. Nano Lett., 2022, vol. 22, pp. 2923–2933. https://doi.org/10.1021/acs.nanolett.2c00100

43. Kichatov B., Korshunov A., Sudakov V., Petrov O., Gubernov V., Korshunova E., Kiverin A. Magnetic Nanomotors in Emulsions for Locomotion of Microdroplets. ACS Appl. Mater. Interfaces, 2022, vol. 4, pp. 10976–10986. https://doi.org/10.1021/acsami.1c23910


Review

For citations:


Sokolov E.A., Kalyuzhnaya D.A., Reks A.G., Kalenchuk V.I., Zhukov G.A., Politov R.E., Ryapolov P.A. Dynamics of Active Bubbles in a Magnetic Fluid in an Inhomogeneous Magnetic Field. Proceedings of the Southwest State University. Series: Engineering and Technology. 2023;13(1):102-119. (In Russ.) https://doi.org/10.21869/2223-1528-2023-13-1-102-119

Views: 205


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)