Formation Conditions and Surface Topography of Nickel Nanofilms on Copper
Abstract
The purpose. The aim of this work is to develop a technique for obtaining uniform nickel films of nanometer thickness on a metal surface. Electrochemical films of nickel on copper were chosen as the object of research. The article describes a technique for determining the topography of electrochemical nickel films of nanometer thickness (40-60 nm) applied to a conductive substrate with low roughness.
Methods. A study of the roughness of the Cu substrate of the Ni film was carried out using metallographic and probe microscopes. To obtain electrochemical nickel films, a Watts solution and an installation for the production of electrochemical films by the drop method were used; To minimize the roughness of the nickel surface, we used a low current mode with an electrolysis time of 2–10 min on a copper and aluminum foil substrate. For the theoretical substantiation of the technique, an electrodynamic boundary value problem is constructed, solved by the Fourier method.
Results. Mathematical and computer models of the distribution of the normal component of the current density at the electrolyte-metal interface have been constructed. Using the method of force tunneling microscopy, the roughness of the obtained nickel nanofilms on copper was determined. To obtain homogeneous magnetic films with a thickness of about 50 nm, the necessity of high-quality preliminary polishing of the substrate surface is shown. The conditions for the formation of a solid film of nanometer thickness are considered, and the properties of nickel magnetic films on copper are obtained. The binding energies of dimers were calculated by the methods of quantum chemistry NDDO PM3 and ab initio (HF) to assess the reactivity and the possibility of interaction of nickel atoms with surface aluminum and copper atoms.
Conclusion. The parameters of the nickel surface roughness, which affect the operational properties of the devices, have been determined. It is shown that the formation of a nickel film on the copper surface is possible for Ni thicknesses exceeding the average substrate roughness.
About the Authors
V. V. FilippovRussian Federation
Vladimir V. Filippov, Dr. of Sci. (Physics and Mathematics), Associate Professor, Professor of the Department of Mathematics and Physics
st. Lenina 42, Lipetsk 398020
73 st. Zemlyanoy Val, Moscow 109004
S. E. Luzyanin
Russian Federation
Sergey E. Luzyanin, Senior Lecturer of the Department of Informatics, Information Technologies and Information Security
st. Lenina 42, Lipetsk 398020
E. S. Nefedova
Russian Federation
Elena S. Nefedova, Student of the Department of Mathematics and Physics
st. Lenina 42, Lipetsk 398020
D. V. Tokareva
Russian Federation
Daria V. Tokareva, Student of the Department of Mathematics and Physics
st. Lenina 42, Lipetsk 398020
References
1. Rumyantseva K. E. Phizicheskie i tehnicheskie cvoistva pokritiy [Physical and technological properties of coatings]. Ivanovo, Ivanovo St. Univ. of Chemical Technology Publ., 2018. 80 p.
2. Vaz C. A. F., Bland J. A. C., Lauhoff G. Magnetism in ultrathin film structures. Reports on Progress in Physics, 2008, vol. 71, is. 5, рр. 056501. https://doi.org/10.1088/00344885/71/5/056501.
3. Indra Pardede, Daiki Yoshikawa, Tomosato Kanagawa, eds. Anatomy of large perpendicular magnetic anisotropy in free-standing Co / Ni (111) multilayer. Journal of Magnetism and Magnetic Materials, 2020, vol. 500, рр. 166357. https://doi.org/10.1016/j.jmmm.2019.166357.
4. Pip P., Donnelly C., Döbeli M., eds. Electroless deposition of Ni – Fe alloys on Scaffolds for 3D Nanomagnetism. Nano micro small, 2020, vol. 16, no. 44, рр. 2004099. https://doi.org/10.1002/smll.202004099.
5. Fei Liang, Hai-Feng Tan, Bin Zhang, eds. Maximizing necking-delayed fracture of sandwich-structured Ni / Cu / Ni composites. Scripta Materialia, 2017, vol. 134, no. 6, рр. 28–32. https://doi.org/10.1016/j.scriptamat.2017.02.032.
6. Apokin I. A. Tehnologia izgotovleniya ferromagnitnih plyenok [Ferromagnetic films manufacturing technology]. Moscow, Fizmatlit Publ., 2016. 80 p.
7. Berezhnaya A. G. Elektrohimicheskie tehnologii i materiali [Electrochemical technologies and materials]. Taganrog, Southern Federal Univ. Publ., 2017, 118 p.
8. Virbilis S. Galvanotehnika dlya masterov [Electroplating for craftsmen]. Moscow, Nauka Publ., 2017. 208 p.
9. Polyakov N. N., Mitsuk S. V., Filippov V. V. Kapelniy metod elektrohimicheskogo osajdenia kontaktov metal-poluprovodnik i issledovanie ih svoistv [Drop method of electrochemical deposition of metal-semiconductor contacts and research of their properties]. Zavodskaya laboratoriya. Diagnostika materialov =Factory laboratory. Diagnostics of materials, 2006, vol. 72, no. 2, pp. 30–34.
10. Dzhumaliev A. S., Nikulin Yu. V., Filimonov Yu. A. Sherohovatosty poverhnosti i magnitnie svoistva polikrisyallicheskih plenok Co / SiO2 / Si (100), poluchennih magnetronnim raspileniem na postoyannom toke [Surface roughness and magnetic properties of Co / SiO2 / Si (100) polycrystalline films obtained by DC magnetron sputtering]. Radiotechnika i elektronika = Radio Engineering and Electronics, 2017, vol. 54, no. 3, рр. 247–251.
11. Dzhumaliev A. S., Nikulin Y. V., Filimonov Y. A. Magnetronnoe osazhdenie tonkikh plenok Cu (200) na podlozhki Ni(200)/SiO2/Si [Magnetron sputtering of thin Cu(200) films on Ni(200)/SiO2/Si substrates]. Zhurnal tekhnicheskoi fiziki = Technical Physics, 2014, vol. 59, no. 7, рр. 1097–1100. https://doi.org/10.1134/S106378421407010X.
12. Loginov B. A., Loginov P. B., Loginov V. B. Zondovaya mikroskopiya: primeneniya i rekomendacii po razrabotke [Probe microscopy: applications and recommendations for development]. Nanoindustriya = Nanoindustry, 2019, vol. 12, no. 6, pp. 352–365.
13. Chen C. J. Introduction to Scanning Tunneling Microscopy. New York, Oxford University Press, 2015. 488 p.
14. Filippov V. V., Luzyanin S. E., Emelyanov V. M. Modelirovanie elektricheskih polej v neodnorodnyh poluprovodnikah i kompozicionnyh strukturah pri zondovyh izmereniyah [Modeling of electric fields in inhomogeneous semiconductors and composite structures during probe measurements]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies. 2019, vol. 9, no. 3, pp. 64–78.
15. Filippov V. V., Mitsuk S. V., Luzyanin S. E. Electric field mathematical modeling at probe measurement in anisotropic semiconductor films. Proceedings, 1st International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency, SUMMA 2019. Lipetsk, 2019. рр. 465–468. https://doi.org/10.1109/SUMMA48161.2019.8947507.
16. Pavlova A. Yu., Nikulin Yu. V., Dzhumaliev A. S., eds. Vliyanie tekstury plenok nikelya na razmery oksidnyh nanostruktur, poluchennyh metodom lokal'nogo anodnogo okisleniya [Influence of the texture of nickel films on the size of oxide nanostructures obtained by the method of local anodic oxidation]. Nanoinzheneriya = Nanoengineering, 2018, vol. 11, no. 5, pp. 14–20.
17. Houselt van A., Zandvliet H. J. W. Colloquium: Time-resolved scanning tunneling microscopy // Time-resolved scanning tunneling microscopy. Reviews of Modern Physics, 2010, vol. 82, рр. 1593–1605. https://doi.org/10.1103/RevModPhys.82.1593.
18. Lezhnin N. V., Makarov A. V., Luchko S. N., eds. Osobennosti formirovaniya topografii poverkhnosti konstruktsionnoi stali 09G2S pri ul'trazvukovoi udarno-friktsionnoi uprochnyayushchei obrabotke [The effect of ultrasonic impact-friction treatment on a surface roughness of 09Mn2Si structural steel]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2020, vol. 22, no. 2, pp. 16–29. https://doi.org/10.17212/1994-6309-2020-22.2-16-29.
19. Butyrskaya E. V. Komp'yuternaya himiya: osnovy teorii i rabota s programmami Gaussian i GaussView [Computer chemistry: basic theory and work with Gaussian and GaussView programs]. Moscow, Solon-Press, 2017, 224 p.
20. Minkin V. I., Simkin B. Ya., Minyaev R. M. Teoriya stroeniya molekul [The theory of the structure of molecules]. Rostov-on-Don, Feniks Publ., 1997. 560 p.
Review
For citations:
Filippov V.V., Luzyanin S.E., Nefedova E.S., Tokareva D.V. Formation Conditions and Surface Topography of Nickel Nanofilms on Copper. Proceedings of the Southwest State University. Series: Engineering and Technology. 2021;11(3):59-76. (In Russ.)