Specific Features of Crystalline Texture Formation During Magnesium Rich Aluminum Alloys As-Cast Structure Workover
Abstract
The purpose of this studyinvestigation of texture evolution during magnesium rich aluminum alloys as-cast structure workover in reversing mill.
Methodology. As part of the studytwo cast workpieces from magnesium rich aluminum alloys 5182 and 1565 ch were rolled in a commercial reversing mill for as-cast structure workover. Аs-cast structure formation was modeled at different Zener parameters. Samples microstructure was analyzed using Carl Zeiss Axiovert - 40 MAT optical microscope. Texture was investigated by reflection method, using X-ray diffraction meter DRON-7 in Cokα-radiation. Results. The study identified similarities and differences specific to both alloys. The major common feature of both alloys is second-phase particles based mechanism of recrystallized grains nucleation. However, significant difference consists in second phase particles-based nucleation being specific to 1565ch.Under some thermomechanical treatment modes second-phase particles based nucleation will be prevailing mechanism in 1565ch. Besides, 5182 fully recrystallizes after as-cast structure workover completion, while in 1565 ch only small metal volume recrystallizes.
Conclusion. Such factor calls for two different approaches to texture formation management for each studied alloys. In case of 5182 alloy as-cast structure shall be worked over with low Zener-Hollomon parameters with attempt to achieve max sharp cube texture. Vice versa, 1565 ch as-cast structure workover shall be performed with high ZenerHollomon parameters to eliminate pronounced texture components after recrystallization.
About the Authors
E. V. AryshenskiiRussian Federation
Evgenii V. Aryshenskii, Cand. of Sci. (Engineering), Associate Professor of the Department Process Metallurgy and Aviation Material Science Department Assistant Professor
34 Mosskovskoe shosse, Samara 443086
Researcher ID: AAQ-6059-2021
S. V. Konovalov
Russian Federation
Sergey V. Konovalov, Dr. of Sci. (Engineering), Head of the Process Department Metallurgy and Aviation Material Science Department Professor
34 Mosskovskoe shosse, Samara 443086
Researcher ID: G-3789-2013
References
1. Nikitin K. V., Nikitin V. I., Timoshkin I. Yu., Deyev V. B. Vliianie modifitsirovaniea rasplava ligaturami na osnove aliuminiya s dobavkami redkozemelnykh i shchelochnozemelnykh metallov na strukturu i svoistva doevtekticheskikh siluminov [Effect of molten metal modification using aluminum based addition alloy with rare earth and alkaline-earth metals on hypereutectic silumin structure and properties]. Metallurg = Metallurgist, 2021, vol. 6, рр. 81–86.
2. Deyev V. B., Prusov Е. S., Shurkin P. К., Ri E. Kh., Smetanyuk S. V. Vliyanie tseriya na fazovyi sostav i kharakter kristallizatsii liteinykh aliuminievykh splavov sistemy Al-MgSi [Сerium influence on AL-MG-SI system cast alloys phase composition and crystallization behaviour]. Izvestiya vysshikh uchebnykh zavedenii. Zvetnaya metallurgiya = Proceedings of Higher Educational Institutions. Nonferrous Metallurgy, 2021, vol. 27, no. 3, рр. 37–45.
3. Ibragimov V. E., Bazhin V. Yu. Termodinamicheskoe modelirovanie reaktsii rafinirovaniya i modifitsirovaniya rasplava sistemy Al-Mg-Si karbonatom margantsa [Thermodynamic modeling of refining reaction and Al-Mg-Si system molten metal modification using manganese carbonate]. Estestvennye i technicheskie nauki = Natural and Technical Sciences, 2020, vol. 6 (144), рр. 163–167.
4. Hirsch J. Thermomechanical control in aluminium sheet production. Materials Science Forum. Trans. Tech. Publications Ltd., 2003, vol. 426, рр. 185–194.
5. Engler O. Modeling of texture and texture-related properties during the thermomechanical processing of aluminum sheets. Materials Science Forum. Trans Tech Publications Ltd., 2003, vol. 426, рр. 3655–3660.
6. Engler O., Kalz S. Simulation of earing profiles from texture data by means of a visco-plastic self-consistent polycrystal plasticity approach. Materials Science and Engineering: A, 2004, vol. 373, no. 1–2, рр. 350–362.
7. Hutchinson W. B., Oscarsson A., Karlsson А. Control of microstructure and earing behaviour in aluminium alloy AA 3004 hot bands. Materials Science and Technology, 1989, vol. 5, no. 11, рр. 1118–1127.
8. Engler O. Control of texture and earing in aluminium alloy AA 3105 sheet for packaging applications. Materials Science and Engineering: A, 2012, vol. 538, рр. 69–80.
9. Wells M. A., Samarasekera I. V., Brimacombe J. K., Hawbolt E. B., Lloyd D. J. Modeling the microstructural changes during hot tandem rolling of AA5 XXX aluminum alloys. Part II. Textural evolution. Metallurgical and Materials Transactions B, 1998, vol. 29, no. 3, рр. 621–633.
10. Wells M. A., Samarasekera I. V., Brimacombe J. K., Hawbolt E. B., Lloyd D. J. Modeling the microstructural changes during hot tandem rolling of AA5XXX aluminum alloys: Part III. Overall model development and validation. Metallurgical and Materials Transactions B, 1998, vol. 29, no. 3, рр. 709–719.
11. Vatne H. E., Wells M. A. Modelling of the recrystallization behaviour of AA5XXX aluminum alloys after hot deformation. Canadian Metallurgical Quarterly, 2003, vol. 42, no. 1, рр. 79–88.
12. Zaidi M. A., Sheppard T. Development of microstructure throughout roll gap during rolling of aluminium alloys. Metal Science, 1982, vol. 16, no. 5, рр. 229–238.
13. Hirsch J., Karhausen K., Kopp R. Microstructure simulation during hot rolling of Al-Mg alloys. Proc. 4th Int. Conf. on Aluminium Alloys (ICAA4). Atlanta GA, 1994.
14. Aryshenskii E. V., Aryshenskii V. Y., Grechnikova A. F., Beglov E. D. Evolution of texture and microstructure in the production of sheets and ribbons from aluminum alloy 5182 in modern rolling facilities. Metal Science and Heat Treatment, 2014, vol. 56, no. 7, рр. 347– 352.
15. Aryshenskii E. V., Hirsch J., Konovalov S. V., Prahl U. Specific features of microstructural evolution during hot rolling of the as-cast magnesium-rich aluminum alloys with added transition metal elements. Metallurgical and Materials Transactions A, 2019, vol. 50, no. 12, рр. 5782–5799. http://doi.org/10.1007/s11661-019-05480-x.
16. Aryshenskii E., Е. Beglov, E. Hirsch, J., Aryshenskii V., Konovalov S. Development of the new fast approach for calculation of texture evolution during hot deformation of aluminum alloys. Procedia Manufacturing, 2019, vol. 37, рр. 492–499. http://doi.org/10.1016/j.promfg.2019.12.079.
17. Aryshenskii E., Kawalla R., Hirsch J. Development of new fast algorithms for calculation of texture evolution during hot continuous rolling of Al–Fe alloys. Steel Research In- ternational, 2017, vol. 88, no. 10, рр. 1700053. http://doi.org/10.1016/j.promfg.2019.12.079. http://doi.org/10.1002/srin.201700053.
18. van Houtte P., Li S., Seefeldt M., Delannay L. Deformation texture prediction: from the Taylor model to the advanced Lamel model. International Journal of Plasticity, 2005, vol. 21, no. 3, рр. 589–624. http://doi.org/10.1016/j.ijplas.2004.04.011.
19. Yashin V., Aryshenskii E., Hirsch J., S. Konovalov, I. Latushkin. Study of recrystallization kinetics in AA5182 aluminium alloy after deformation of the as-cast structure. Materials Research Express, 2019, vol. 6, is. 6, рр. 066552. http://doi.org/10.1088/2053-1591/ab085f.
20. Aryshenskii E., Hirsch J., Yashin V., Konovalov S., Chitnaeva E. Study of the recrystallization behaviour of the aluminium 1565ch alloy during hot rolling of the as cast structures. Materials Research Express, 2019, vol. 6, no. 7, рр. 076524. http://doi.org/10.10088/2053-1591/ab13b6.
21. Aryshenskii E. V., Aryshenskii V. Y., Beglov E. D., Chitnaeva E. S., Konova- lov S. V. Investigation of subgrain and fine intermetallic participles size impact on grain boundary mobility in aluminum alloys with transitional metal addition. Materials Today: Proceedings, 2019, vol. 19, pр. 2183–2188. http://doi.org/10.1016/j.matpr.2019.07.370.
Review
For citations:
Aryshenskii E.V., Konovalov S.V. Specific Features of Crystalline Texture Formation During Magnesium Rich Aluminum Alloys As-Cast Structure Workover. Proceedings of the Southwest State University. Series: Engineering and Technology. 2021;11(3):28-45. (In Russ.)