Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Experimental Verification of Additive Elasticity Model of Magnetic Fluids

https://doi.org/10.21869/2223-1528-2021-11-4-149-163

Abstract

The purpose of the work is an experimental verification of additive elasticity model of magnetic fluids.  

Methods. To achieve the purpose of the work, methods of molecular acoustics and methods of systems analysis were used. Magnetic fluids are an example of microheterogenous medium. The small size of the magnetic particles dispersed in the carrier fluid compared to the ultrasonic wavelength makes it possible to apply certain findings of continuum mechanics to magnetic fluids. Thus elastic properties of magnetic fluids are described by the additive model, which is based on the assumption of the additivity of the specific compressibility of the components included in the system, wherein the specific compressibility means the product of the compressibility of a given component and its volume concentration. The work investigated magnetic fluids on a different basis and different concentrations. Samples with lower concentration were obtained by diluting the original ones. Investigations of the dispersion medium of all magnetic fluids were also carried out. The speed of sound was determined by the pulse-phase method, with the mode of multiple reflection from the receiving and transmitting piezoplates.

Results. Comparative analysis of experimentally obtained dependences of speed of light and adiabatic compressibility of MF on solid phase concentration with theoretical data obtained in the context of additive elasticity model was conducted. This analysis made it possible to estimate the adiabatic compressibility of surface-active agent of magnetic fluids - the oleic acid. It was concluded that adiabatic compressibility of surface-active agent – the oleic acid is slightly less than adiabatic compressibility of free oleic acid.

Conclusion. The conducted studies made it possible to experimentally confirm additive model of the formation of magnetic fluid elasticity экспериментально and supplement conclusions of the microheterogenous media theory.

About the Authors

L. I. Roslyakova
Southwest State University
Russian Federation

Liudmila I. Roslyakova, Cand. of Sci. (Physics and Mathematics), Associate Professor, Associate Professor of the Department of Nanotechnology, Microelectronics, Mi General and Applied Physics

50 Let Oktyabrya str. 94, Kursk, 305040



G. V. Karpova
Southwest State University
Russian Federation

Galina V. Karpova, Cand. of Sci. (Physics and Mathematics), Associate Professor, Associate Professor of the Department of Nanotechnology, Microelectronics, Mi General and Applied  Physics

50 Let Oktyabrya str. 94, Kursk, 305040



V. V. Yushin
Southwest State University
Russian Federation

Vasilii V. Yushin, Cand. of Sci. (Engineering), Associate Professor, Head of the Department of Labor and Environmental Protection

50 Let Oktyabrya str. 94, Kursk, 305040



References

1. Dikansky Yu. I. Eksperimental'noe issledovanie vzaimodeistviya chastits i strukturnykh prevrashchenii v magnitnykh zhidkostyakh. Diss. kand. fiz.-mat. nauk [Experimental study of the interaction of particles and structural transformations in magnetic fluids. Diss. cand. phys. mat. sci.]. Stavropol, 1984. 125 p.

2. Varlamov Yu. D., Kaplun A. B. Issledovanie protsessov strukturoobrazovaniya v magnitnykh zhidkostyakh [Investigation of processes of structure formation in magnetic fluids]. Magnitnaya gidrodinamika magnetic hydrodynamics, 1983, no. 1, рр. 33–39.

3. Drozdova V. I. Eksperimental'noe issledovanie struktury magnitnykh zhidkostei. Diss. kand. fiz.-mat. nauk [Experimental study of the structure of magnetic fluids. Diss. cand. phys. And math. sci.]. Stavropol, 1983. 139 p.

4. Zhao W., Cheng R., Miller J. R., Mao L. Label‐free microfluidic manipulation of particles and cells in magnetic liquids. Advanced functional materials, 2016, vol. 26, no. 22, pp. 3916–3932.

5. Luo L., He Y. Magnetically driven microfluidics for isolation of circulating tumor cells. Cancer Medicine, 2020, vol. 9, pp. 4207–4231.

6. Narasimham A. V. Observation of ultrasonic relaxation times in ferrofluids under the action of a magnetic field. J. Appl. Phys., 1981, vol. 1, рр. 1094–1097.

7. Chung D. Y., In J. X. Ultrasonic velocity measurement in conductive magnetic fluids. J. Appl. Phys., 1982, vol. 53, vol. 3, рр. 2736–2738.

8. Isler W.E., Chung D.Y. Anomalous attenuation of ultrasonik in ferrofluids under the influence of a magnetic field. J. Appl. Phys., 1978, vol. 49, no. 3, рр. 1812–1814.

9. Prokhorenko P. P., Baev A. R., Seregin E. M. Оb akusticheskikh svoistvakh magnitnykh ferrozhidkostei primenitel'no k ul'trazvukovoi defektoskopii [On the acoustic properties of magnetic ferrofluids as applied to ultrasonic flaw detection]. Izvestiya Akademii nauk BSSR. Seriya fiziko-matematicheskikh nauk = Proceedings of the Academy of Sciences of the BSSR. Series of Physical and Mathematical Sciences, 1983, no. 1, рр. 88–92.

10. Polunin V. M. Аkusticheskie effekty v magnitnykh zhidkostyakh [Acoustic effects in magnetic fluids]. Moscow, Fizmatlit Publ., 2008, 208 р.

11. Polunin V. M., Storozhenko A. M., Ryapolov P. A. Mechanics of liquid nano- and microdispersed magnetic media. Boca Raton, CRC Press, 2017. 198 р.

12. Tsebers A. O. O Roli poverkhnostnykh vzaimodeistvii pri rassloenii magnitnykh zhidkostei [On the role of surface interactions in stratification of magnetic fluids]. Magnitnaya gidrodinamika = Magnetic hydrodynamics, 1982, no. 4, рр. 21–27.

13. Polunin V. M., Ryapolov P. A., Platonov V. B., Sheldeshova E. V., Karpova G. V., Aref’ev I. M. Elasticity of a magnetic fluid in a strong magnetic field. Acoustical Physics, 2017, vol. 63, no. 4, рр. 416–423.

14. Polunin V. M., Ryapolov P. A., Shel’deshova E. V., Kuz’ko A. E., Aref’ev I. M. Dynamic elasticity of a magnetic fluid column in a strong magnetic field. Russian Physics Journal, 2017, vol. 60, no. 3, рр. 381–388.

15. Polunin V. M., Zraichenko V. M., Ignatenko N. M. Acoustic phenomena in magnetic colloids. Journal of Magnetism and Magnetic Materials, 1990, no. 85, рр. 141–143.

16. Polunin V. M., Ignatenko N. M. Ob uprugikh svoistvakh ferromagnitnoi zhidkosti [On elastic properties of ferromagnetic liquid]. Magnitnaya Gidrodinamika = Magnetic Hydrodynamics, 1980, no. 3, рр. 26–30.

17. Prokhorenko P. P., Baev A. R., Rakhuba E. E., Samoilov V. P., Matusevich N. P. Issledovaniya akusticheskikh kharakteristik magnitnykh zhidkostei [Research of acoustic characteristics of magnetic fluids]. Izvestiya Akademii nauk BSSR. Seriya fiziko-matematicheskikh nauk = Proceedings of the Academy of Sciences of the BSSR. Series of Physical and Mathematical Sciences, 1981, no. 5, рр. 88–90.

18. Polunin V. M., Boev M. L., Tan M. M., Karpova G. V., Roslyakova L. I. Elastic properties of a magnetic fluid with an air cavity retained by levitation forces. Acoustical Physics, 2013, vol. 59, no. 1, рр. 56–61.

19. Kondo S., Ikari K., Sawada T. Vibrating properties of a magnetic-fluid tuned liquid column damper with different U-pipes. Materials Science Forum. Trans Tech Publications Ltd, 2016, vol. 856, рр. 21–25.

20. Polunin V. M., Ryapolov P. A., Ryabtsev K. S., Kobelev N. S., Shabanova I. A., Yushin V. V., Postnikov E. B. Elasticity of an air cavity in a magnetic fluid on an annular magnet segment with changing magnetic field sign. Russian Physics Journal, 2018, vol. 61, no. 7, рр. 1347–1357.

21. Zhang W., Peng J., Li S. Damping force modeling and suppression of self-excited vibration due to magnetic fluids applied in the torque motor of a hydraulic servovalve. Energies, 2017, vol. 10, no. 6, рр. 749.

22. Polunin V. M., Yemelyanov S. G., Ryapolov P. A., Shel'deshova E. V. Shear and Oscilations of the Magnetic Fluid Column in a Strong Magnetic Field. Magnetohydrodynamics, 2017, vol. 53, no. 3, рр. 471–482.

23. Zotov V. V., Neruchev Yu. A., Otpuschennikov N. Yu. Eksperimental'noe issledovanie zavisimosti skorosti zvuka v nekotorykh organicheskikh zhidkostyakh [Experimental study of the dependence of the speed of sound in some organic liquids]. Ul'trazvuka i fizukokhimicheskie svoistva veshchestva = Ultrasound and physical and chemical properties of the substance. Kursk, 1969, no. 3, рр. 25–35.

24. Merkulov L. G., Tretyakov V. A. K voprosu o predel'noi tochnosti izmereniya skorosti zvuka impul'sno-fazovym metodom [On the issue of the limiting accuracy of measuring the speed of sound by the pulse-phase method]. Akusticheskii zhurnal = Acoustic Magazine, 1974, vol. 20, no. 4, рр. 594–601.

25. Polunin V. M., Roslyakova L. I. Ob adiabatnoi szhimaemosti i volnovom soprotivlenii magnitnykh zhidkostei [On adiabatic compressibility and wave resistance of magnetic fluids]. Magnitnaya gidrodinamika = Magnetic hydrodynamics, 1986, no. 3, рр. 136–145.

26. Krakov M. S., Matusevich N. P. K voprosu ob ustoichivosti magnitnykh kolloidov i ikh maksimal'noi namagnichennosti [On the question of the stability of magnetic colloids and their maximum magnetization]. Magnitnye zhidkosti: nauchnye i prikladnye issledovaniya [Magnetic liquids: scientific and applied research]. Minsk, ITMO Academy of Sciences of the BSSR, 1983. P. 3–11.

27. Polunin V. M., Roslyakova L. I., Pyankov E. Uchebnyi pribor po fizike dlya demonstratsii volnovykh protsessov [In Physics teaching device for demonstration of wave processes]. Patent SSSR, no. 1430984, 1987.

28. Kazakov Yu. B., Morozov N. A., Starodomsky Yu. I., Perminov S. M. Germetizatory na osnove nanodispersnykh magnitnykh zhidkostei i ikh modelirovanie [Hermetic seals based on nanodispersed magnetic fluids and their modeling]; ed. by Yu. B. Kazakov. Ivanovo, Ivanovo St. Power Engineering Univ. named after V. I. Lenin, 2010. 184 p.

29. Ryapolov P. A., Polunin V. M., Bashtovoy V. G., Sokolov E. A., Sheldeshova E. V. Vliyanie struktury i parametrov magnitnoi zhidkosti na magnitoforez v tonkom sloe [Influence of the structure and parameters of magnetic fluid on magnetophoresis in a thin layer]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proce- edings of the Southwest State University. Series: Engineering and Technology, 2021, vol. 11, no. 1, рр. 75–89.

30. Polunin V. M., Ryapolov P. A., Platonov V. B. Mechanics of magnetic fluid column in strong magnetic fields. Journal of Magnetism and Magnetic Materials, 2017, vol. 431, no. 12–15.

31. Sapiński B., Horak W., Szczęch M. Investigation of MR fluids in the oscillatory squeeze mode. Acta mechanica et automatic, 2013, vol. 7, no. 2, рр. 111–116.

32. Polunin V. M., Storozhenko A. M., Platonov V. B., Lobova O. V., Ryapolov P. A. Oscillations of magnetic fluid column in strong magnetic field. Russian Physics Journal, 2017, vol. 59, no. 9, рр. 1498–1506.

33. Gladilin A. V., Pirogov V. A., Golyamina I. P., Kulaev U. V., Kurbatov P. A., Kurbatova E. P. Vibration converter with magnetic levitation. Acoustical Physics, 2015, vol. 61. no. 3, рр. 376–382.


Review

For citations:


Roslyakova L.I., Karpova G.V., Yushin V.V. Experimental Verification of Additive Elasticity Model of Magnetic Fluids. Proceedings of the Southwest State University. Series: Engineering and Technology. 2021;11(4):149-163. (In Russ.) https://doi.org/10.21869/2223-1528-2021-11-4-149-163

Views: 127


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)