Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Dynamics of Magnetic Fluids Undergoing Oscillatory Shear

https://doi.org/10.21869/2223-15282021-11-4-137-148

Abstract

The purpose of the work: to study the dynamics of the volume of a magnetic fluid levitating in an external magnetic field experiencing an oscillatory shift.

Metods. The experiments were carried out on installations developed on the basis of known methods and equipment for magnetic measurements and manufactured independently. We study samples of magnetic fluid based on magnetite Fe3O4 stabilized with oleic acid. Kerosene was used as a carrier fluid. 

Results. Samples of a magnetic fluid with different physical parameters are considered, and the dependence of the viscosity on the magnetization of the magnetic field is investigated. The increase in viscosity in a magnetic field upon the action of a levitating MF column on the interface can be explained by an increase in particle interactions, which lead to MF microstructuring in the near-wall layer. The microstructure of the sample and the presence of large magnetic particles exert the greatest influence on the dynamics of a magnetic fluid, which undergoes an oscillatory shift and magnetoviscous effect.

Conclusion. An assessment of the viscous magnetism effect in a thin near-wall layer of a column of magnetic fluid vibrating in a tube is made when a strong magnetic field is applied. The calculation of the viscosity value is carried out according to the formula obtained on the basis of two different theoretical approaches. The results of the work can be used to develop a method for express testing of magnetic fluid samples, as well as to develop acceleration and vibration sensors based on magnetic fluids. This method can be used to study magnetophoresis and aggregation of nanoparticles. Information on the viscous magnetic effect will be valuable for microfluidic technologies, where magnetic fluids with anisotropic particles, functionalized with various specific surfactants and flowing in microchannels, are used.

About the Authors

E. V. Shel’deshova
Southwest State University
Russian Federation

Elena V. Shel’deshova, Post-Graduate Student  of the Department of Nanotechnology, Microelectronics, General and Applied Physics

50 Let Oktyabrya str. 94, Kursk, 305040



A. A. Churaev
Southwest State University
Russian Federation

Alexander A. Churaev, Student of the Department of Nanotechnology, Microelectronics,  General and Applied Physics

50 Let Oktyabrya str. 94, Kursk, 305040



I. A. Shabanova
Southwest State University
Russian Federation

Irina A. Shabanova, Сand. of Sci. (Physics and Mathematics), Associate Professor of the  Department of Nanotechnology, Microelectronics, General and Applied Physics

50 Let Oktyabrya str. 94, Kursk, 305040



P. A. Ryapolov
Southwest State University
Russian Federation

Petr A. Ryapolov, Сand. of Sci. (Physics and Mathematics), Associate Professor, Dean ENF

50 Let Oktyabrya str. 94, Kursk, 305040



References

1. Rosensweig R. E. Ferrohydrodynamics. Courier Corporation, 2013. 368 р.

2. Novopashin S. A., Serebryakova M. A., Khmel S. Y. Metody sinteza magnitnoi zhidkosti [Methods of magnetic fluid synthesis]. Teplofizika i aeromekhanika = Thermophysics and Aeromechanics, 2015, vоl. 22, no. 4, рр. 397–412.

3. Neuringer J. L., Rosensweig R. E. Ferrohydrodynamics. The Physics of Fluids, 1964, vоl. 7, no. 12, рр. 1927–1937.

4. Sokolsky S. A., Solovyova A. Y., Zverev V. S., Hess M., Schmidt A., Elfimova E. A. Analysis of the ferrofluid microstructure based on the static magnetic measurements. Journal of Magnetism and Magnetic Materials, 2021, vоl. 537, рр. 168169.

5. Ivanov A. S., Pshenichnikov A. F., Khokhryakova C. A. Floating of solid non-magnetic bodies in magnetic fluids: Comprehensive analysis in the framework of inductive approach. Physics of Fluids, 2020, vоl. 32, no. 11, рр. 112007.

6. Ivanov A. S. Anomalous interfacial tension temperature dependence of condensed phase drops in magnetic fluids. Physics of Fluids, 2018, vоl. 30, no. 5, рр. 052001.

7. Colloidal magnetic fluids: basics, development and application of ferrofluids; ed. by S. Odenbach. Springer, 2009. 432 р.

8. Ambacher O., Odenbach S., Stierstadt K. Rotational viscosity in ferrofluids. Zeitschrift für Physik B Condensed Matter, 1992, vоl. 86, no. 1, рр. 29–32.

9. Odenbach, S., Gilly H. Taylor vortex flow of magnetic fluids under the influence of an azimuthal magnetic field. Journal of magnetism and magnetic materials, 1996, vоl. 152, no. 1-2, рр. 123–128.

10. Zubarev A. Y., Odenbach S., Fleischer J. Rheological properties of dense ferrofluids. Effect of chain-like aggregates. Journal of Magnetism and Magnetic Materials, 2002, vоl. 252, рр. 241–243.

11. Suarez-Fernandez W. R., Scionti G., Duran J. D., Zubarev A. Y., Lopez-Lopez M. T. Role of particle clusters on the rheology of magneto-polymer fluids and gels. Philosophical Transactions of the Royal Society A, 2020, vоl. 378, no. 2171, рр. 20190254.

12. Chirikov D., Iskakova L., Zubarev A., Radionov A. On the theory of rheological properties of bimodal magnetic fluids. Physica A: Statistical Mechanics and its Applications, 2014, vоl. 406, рр. 298–306.

13. Hezaveh H., Fazlali A., Noshadi I. Synthesis, rheological properties and magnetoviscos effect of Fe2O3/paraffin ferrofluids. Journal of the Taiwan Institute of Chemical Engineers, 2012, vоl. 43, no. 1, рр. 159–164.

14. Patel R., Virapura H., Parmar M. Magnetoviscous effect in dilute bidispersed ferrofluids through micro capillary. Journal of Nanofluids, 2014, vоl. 3, no. 4, рр. 307–311.

15. Siebert E., Dupuis V., Neveu S., Odenbach S. Rheological investigations on the theoretical predicted “Poisoning” effect in bidisperse ferrofluids. Journal of Magnetism and Magnetic Materials, 2015, vоl. 374, рр. 44–49.

16. Yamada Y., Enomoto Y. Effects of oscillatory shear flow on chain-like cluster dynamics in ferrofluids without magnetic fields. Physica A: Statistical Mechanics and its Applications, 2008, vоl. 387, no. 1, рр. 1–11.

17. Santiago-Quinones D. I., Raj K., Rinaldi C. A comparison of the magnetorheology of two ferrofluids with different magnetic field-dependent chaining behavior. Rheologica Acta, 2013, vоl. 52, no. 8–9, рр. 719–726.

18. Pinho M., Brouard B., Génevaux J. M., Dauchez N., Volkova O., Mezière H., Col- las P. Investigation into ferrofluid magnetoviscous effects under an oscillating shear flow. Journal of Magnetism and Magnetic Materials, 2011, vоl. 323, no. 18–19, рр. 2386–2390.

19. Cunha F. R., Rosa A. P. Effect of particle dipolar interactions on the viscoelastic response of dilute ferrofluids undergoing oscillatory shear. Physics of Fluids, 2021, vоl. 33, no. 9, рр. 92004.

20. Ryapolov P. A., Polunin V. M., Shel’deshova E. V. An alternative way to study magnetic fluid magnetization and viscosity. Journal of Magnetism and Magnetic Materials, 2020, vоl. 496, рр. 165924.

21. Polunin V. M., Ryapolov P. A., Platonov V. B., Sheldeshova E. V., Karpova G. V., Aref’ev I. M. Uprugost' magnitnoi zhidkosti v sil'nom magnitnom pole [Elasticity of a magnetic fluid in a strong magnetic field]. Akusticheskii zhurnal = Acoustical Physics, 2017, vоl. 63, no. 4, рр. 416–423.

22. Chechernikov V. I. Magnitnye izmereniya [Magnetic measurements]. Moscow, Moscow St. Univ. Publ., 1969. 385 р.

23. Polunin V. M., Ryapolov P. A., Shel’deshova E. V., Kuz’ko A. E., Aref’ev I. M. Dynamic elasticity of a magnetic fluid column in a strong magnetic field. Russian Physics Journal, 2017, vоl. 60, no. 3, рр. 381–388.

24. Leupold H. A., Tilak A. S., Potenziani E. Multi‐Tesla permanent magnet field sources. Journal of applied physics, 1993, vоl. 73, no. 10, рр. 6861–6863.


Review

For citations:


Shel’deshova E.V., Churaev A.A., Shabanova I.A., Ryapolov P.A. Dynamics of Magnetic Fluids Undergoing Oscillatory Shear. Proceedings of the Southwest State University. Series: Engineering and Technology. 2021;11(4):137-148. (In Russ.) https://doi.org/10.21869/2223-15282021-11-4-137-148

Views: 139


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)