Physical Patterns of Deformation and Destruction of a Two-Layer Composite Compound Polymer - Nanocrystalline Metal Film under Local Loading by the Vickers Pyramid
https://doi.org/10.21869/2223-1528-2021-11-4-95-107
Abstract
The purpose. Determination of the mechanical properties of two-layer composites surface coating hard brittle films - elastic polymer, as well as the development of mechanical testing methods.
Methods. Mechanical tests of a multilayer composite compounds without carbon nanotubes and reinforced with carbon nanotubes were carried out by the method of local loading. The dependence of microhardness Hv on the magnitude of the load and the depth of indentation is determined.
Results. The method of creating multilayer composite compounds is described. The values of microhardness for composite compounds are determined. The specificity of the standard method of mechanical testing for a multilayer composite compound is revealed.
Conclusion. The addition of nanotubes to the polymer composite has a weakening effect, which is associated with the formation of nanotube conglomerates, around which pores are formed. It is possible to achieve a growth of strength with an increase in the dispersion of carbon nanotubes. At low loads not exceeding 1 N, the microhardness is determined by the influence of a thin and hard nanocrystalline film. Therefore, the usage of a standard scheme of mechanical tests for loads from 0.5 N to 1 N allows us to define the value of microhardness of thin composite film and polymer. If loads are more than 1.5 N, it is more correctly to say, that we define the value of microhardness of the composite film, polymer and the second nanocrystalline film. If the load increases 1.5-2 N, it is correct say, that we define the microhardness of the composite as a whole. A method for determining the micro-fracture viscosity coefficient of two-layer composite compounds based on determining the total length of cracks on a surface area S, with an imprint from the Vickers pyramid in the center, is proposed.
About the Authors
I. V. UshakovRussian Federation
Ivan V. Ushakov, Dr. of Sci. (Engineering), Professor of the Department of Physics
4 Leninsky aven., Moscow 119049
Researcher ID: I-9828-2017
A. D. Oshorov
Russian Federation
Ayur D. Oshorov, Post-Graduate Student
4 Leninsky aven., Moscow 119049
References
1. Safronov I., Ushakov A. Effect of simultaneous improvement of plasticity and microhardness of an amorphous-nanocrystalline material based on Co, as a result of laser processing of nanosecond duration. Materials Today: Proceedings, 2021, vol. 38(4), pp. 1516–1520. https://doi.org/10.1016/j.matpr.2020.08.141
2. Ushakov I. V., Batomunkuev A. Yu. Sposob opredeleniya koeffitsiyenta vyazkosti mikro razrusheniya tonkikh plenok iz mnogokomponentnykh amorfno-nanokristallicheskikh metallicheskikh splavov [Method for determining the coefficient of micro-fracture viscosity of thin films from multicomponent amorphous-nanocrystalline metal alloys]. Patent RF, no. 2561788, 2015.
3. Shinkin V. N. Springback coefficient of round steel beam under elastoplastic torsion. CIS Iron and Steel Review, 2018, vol. 15, pp. 23–27. https://doi.org/10.17580/cisisr.2018.01.05.
4. Shinkin V. N. Simple analytical dependence of elastic modulus on high temperatures for some steels and alloys. CIS Iron and Steel Review, 2018, vol. 15, pp. 32–38. http://dx.doi.org/10.17580/cisisr.2018.01.07.
5. Ushakov I. V. Zakonomernosti lokal'nogo deformirovaniya i razrusheniya tonkikh lent metallicheskogo stekla 82K3KHSR pri impul'snoy lazernoy obrabotke [Regularities of local deformation and destruction of thin strips of metallic glass 82K3KhSR during pulsed laser processing]. Fizika i khimiya obrabotki materialov = Physics and Chemistry of Material Processing, 2006, no. 5, pp. 24–28.
6. Ushakov I. V., Polikarpov V. M. Mekhanicheskiye ispytaniya tonkikh lent metalli- cheskogo stekla indentorami razlichnoy geometricheskoy formy [Mechanical testing of thin strips of metal glass with indenters of various geometric shapes]. Zavodskaya laboratoriya. Diagnostika materialov = Factory laboratory. Diagnostics of materials, 2007, vol. 69, no. 7, pp. 43–47.
7. Ushakov I. V., Safronov I. S. Sposob opredeleniya plasticheskikh kharakteristik plenok mnogokomponentnykh amorfno-nanokristallicheskikh metallicheskikh splavov [Method for determining the plastic characteristics of films of multicomponent amorphous-nanocrystalline metal alloys]. Patent RF, no. 2494039, 2013.
8. Lawn B. R., Marshall D. B. Hardness, toughness, and brittleness: an indentation analysis. Journal of the American Ceramic Society, 2010, vol. 62(7), p. 347–350. https://doi.org/10.1111/j.1151-2916.1979.tb19075.x.
9. Jǒnsson B., Hogmark S. Hardness measurements of thin films. Institute of Technology, Uppsala University, 1984, pp. 257–269. https://doi.org/10.1016/0040-6090(84)90123-8.
10. Ushakov I. V. Metod mekhanicheskikh ispytaniy metallicheskogo stekla, obrabotannogo lazerom, indentorami s razlichnoy geometriyey [Method of mechanical testing of lasertreated metal glass with indenters with various geometries]. Proceedings of SPIE. The International Society of Optical Engineering, 2007, vol. 6597, pp. 181–185.
11. Kalabushkin A. E., Ushakov I. V., Polikarpov V. M., Titovets Y. F. Revealing of qualitative correlation between mechanical properties and structure of amorphous-nanocrystalline metallic alloy 82K3XCP by microindentation on substrates and X-ray powder diffraction. Proceedings of SPIE. The International Society of Optical Engineering, 2007, vol. 6597, pp. 65970P1–65970P6.
12. Zolotukhin I. V., Kalinin Yu. E. Amorfnyye metallicheskiye splavy [Amorphous metal alloys]. Uspekhi fizicheskikh nauk = Advances in physical sciences, 1990, vol. 160, no. 9, pp. 75–110.
13. Suzuki K., Fujimori H., Hashimoto K. Amorfnyye metally [Amorphous metals]. Moscow, Metallurgiya Publ., 1987, p. 328.
14. Golovin Yu. I. Vvedeniye v nanotekhnologiyu [Introduction to nanotechnology]. Moscow, Mashinostroenie Publ. 2003. 112 p.
15. Glezer A. M., Molotilov B. V. Struktura i mekhanicheskiye svoystva amorfnykh splavov [Structure and mechanical properties of amorphous alloys]. Moscow, Mashinostroenie Publ., 1992. 208 p.
16. Pomogailo A. D., Rosenberg A. S., Uflyand I. E. Nanochastitsy metallov v polimerakh [Metal nanoparticles in polymers]. Moscow, Khimiya Publ., 2000. 672 p.
17. Guozhong Cao, Wang Ying. Nanostruktury i nanomaterialy. Sintez, svoystva i primeneniye [Nanostructures and Nanomaterials. Synthesis, properties and application]. Moscow, Nauchnyy mir Publ., 2012. 515 p.
18. Andrievsky R. A., Ragul A. V. Nanostrukturnyye materialy [Nanostructural materials]. Moscow, Akademiya Publ., 2005. 192 p.
19. Ovidko I.A. Teorii rosta zeren i metody yego podavleniya v nanokristallicheskikh i polikristallicheskikh materialakh [The theory of grain growth and methods of its suppression in nanocrystalline and polycrystalline materials]. Institut problem mashinovedeniya RAN = Institute of Mechanical Engineering Problems of the Russian Academy of Sciences, 2009, no. 8, pp. 174– 199.
20. Manokhin A. I., Mitin B. S., Vasiliev V. A., Revyakin A. V. Amorfnyye splavy [Amorphous alloys]. Moscow, Metallurgiya Publ., 1984. 160 p.
21. Felz A. Amorfnyye i stekloobraznyye neorganicheskiye tverdyye tela [Amorphous and glassy inorganic solids]. Moscow, Mir Publ., 1986. 558 p.
Review
For citations:
Ushakov I.V., Oshorov A.D. Physical Patterns of Deformation and Destruction of a Two-Layer Composite Compound Polymer - Nanocrystalline Metal Film under Local Loading by the Vickers Pyramid. Proceedings of the Southwest State University. Series: Engineering and Technology. 2021;11(4):95-107. (In Russ.) https://doi.org/10.21869/2223-1528-2021-11-4-95-107