Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Research of the Physical and Chemical Properties of Ablated Cerium Dioxide Nanoparticles in the Photocatalytic Process

https://doi.org/10.21869/2223-1528-2021-11-4-78-94

Abstract

Purpose of the study. Investigation of the antioxidant properties of nanodispersed solutions of ablated particles of cerium dioxide under conditions of oxidative degradation of an organic dye methylene blue during a photocatalytic reaction, depending on their size characteristics and the pH-environment of solutions.

Methods. The ablated cerium dioxide nanoparticles were characterized using scanning electron microscopy; a study was carried out in the visible and ultraviolet ranges of the absorption spectra of the samples using an optical spectrophotometer. The antioxidant activity of ablated nanoparticles in the oxidative photocatalytic reaction was studied using the example of the organic dye methylene blue, depending on the size composition of cerium dioxide nanoparticles and the pH environment of the systems. Cerium dioxide nanoparticles with pronounced antioxidant properties have been obtained by laser ablation. 

Results. Scanning electron microscopy revealed that cerium dioxide particles agglomerate in an aqueous solution. After the centrifugation process, the number of agglomerates in the upper layers of the solution with a nanometer size of the order of 10 nm increases. Dependences of the antioxidant activity of cerium dioxide nanoparticles on their size characteristics have been determined. The data obtained during the research indicate the highest antioxidant properties of solutions with cerium dioxide nanoparticles, which were centrifuged at a speed of 13400 rpm. With an increase in the pH-medium of solutions, the intensity of the process of inactivation of reactive oxygen species formed during the photocatalytic reaction increases.

Conclusion. Cerium dioxide nanoparticles ablated by pulsed laser radiation are new nanomaterials that are antioxidants capable of inactivating reactive oxygen species in oxidative processes of a photocatalytic reaction. These properties of cerium dioxide nanoparticles are determined by the content of defects of the oxygen vacancy type on their surface.

About the Authors

V. A. Mamontov
Southwest State University
Russian Federation

Vladimir A. Mamontov, Undergraduate of the Department of the of Nanotechnology and Engineering Physics

50 Let Oktyabrya str. 94, Kursk 305040



A. Y. Ryzhenkova
Southwest State University
Russian Federation

Anna Y. Ryzhenkova, Student of the Department of Nanotechnology, Microelectronics and Engineering Physics

50 Let Oktyabrya str. 94, Kursk 305040



M. A. Pugachevsky
Southwest State University
Russian Federation

Maksim A. Pugachevsky, Dr. of Sci. (Physics and  Mathematics), Professor at the Department of Nanotechnology, Microelectronics and Engineering Physics, Leading Researcher of the Regional center of nanotechnology

50 Let Oktyabrya str. 94, Kursk 305040



F. F. Niyazi
Southwest State University
Russian Federation

Farukh F. Niyazi, Dr. of Sci. (Chemical), Professor

50 Let Oktyabrya str. 94, Kursk 305040



References

1. Aneggi E., de Leitenburg C., Boaro M., Fornasiero P., Trovarell A. Cerium oxide (CeO₂): synthesis, properties and applications; ed. by S. Scirè, L. Palmisan. Elsevier Science, 2020, рр. 45–108, 109–167.

2. Logothetidis S., Patsalas P., Evangelou E. K., Konofaos N., Tsiaoussis I. and Frangis N. Dielectric properties and electronic transitions of porous and nanostructured cerium oxide films. Mater. Sci. Eng., 2004, vol. 109, рр. 69–73. http://doi.org/10.1016/j.mseb.2003.10.048.

3. Patsalas P., Logothetidis S. and Metaxa C. Optical performance of nanocrystalline transparent ceria films. Appl. Phys. Lett., 2002, vol. 81, рр. 466–468. http://doi.org/10.1063/1.1494458.

4. Vazirov R. A., Sokovnin S. Y., Ulitko M. Radiomodification of cell cultures of line Hela by cerium oxide nanoparticles to X-ray irradiation. Radiation and Applications, 2017, vol. 2, is. 2, рр. 139–141. http://doi.org/10.21175/RadJ.2017.02.029 .

5. Filippi A., Liu F., Wilson J., eds. Antioxidant activity of cerium dioxide nanoparticles and nanorods in scavenging hydroxyl radicals. RSC Advances, 2019, vol. 9, рр. 11077–11081. http://doi.org/10.1039/C9RA00642G.

6. Eriksson P., Tal A. A., Skallberget A., eds. Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement. Sci. Rep., 2018, vol. 8(1), рр. 1–12. http://doi.org/10.1038/s41598-018-25390-2.

7. Pugachevsky M. A., Mamontov V. A., Kuzmenko A. P., Neruchev Yu. A. Issledovanie antioksidantnyh svojstv ablirovannyh nanochastic dioksida ceriya v okislitel'noj reakcii Fentona [Investigation of the antioxidant properties of ablated cerium dioxide nanoparticles in the oxidative reaction of Fenton]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technology, 2021, vol. 11, no. 1, рр. 61–74.

8. Vazirov R. A., Sokovnin S. Y., Ilves V. G., Bazhukova I. N., Pizurova N., Kuznet- sov M. V. Physicochemical characterization and antioxidant properties of cerium oxide nanoparticles. Journal of Physics: Conference Series, 2018, vol. 1115, is. 3, рр. 1–6. http://doi.org/10.1088/1742-6596/1115/3/032094.

9. Heckert E.G., Karakoti A.S., Seal S., Self W. T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials, 2008, vol. 29, is. 18, рр. 2705–2709. http://doi.org/10.1016/j.biomaterials.2008.03.014.

10. Barancvicov A. B., Ivanova O. S., Ivanov V. K., Tretyakov Y. D. Lattice expansion and oxygen non-stoichiometry of nanocrystalline ceria. CrystEngComm, 2010, no. 12, рр. 3531–3533. http://doi.org/10.1039/сOce00245c.

11. Gunawan C., Lord M.S., Lovell E., eds. Oxygen-vacancy engineering of cerium-oxide nanoparticles for antioxidant activity. ACS Omega, 2019, vol. 4/5, рр. 473–9479. http://doi.org/10.1021/acsomega.9b00521.

12. Singh K.RB., Nayak V., Sarkar T., Singh R.P. Cerium oxide nanoparticles: properties, biosynthesis and biomedical application. Royal Society of Chemistry, 2020, vol. 10(45), рр. 27194–27214. http://doi.org/10.1039/d0ra04736h.

13. Abid S.A., Taha A.A., Ismail R.A., Mohsin M.H. Antibacterial and cytotoxic activities of cerium oxide nanoparticles prepared by laser ablation in liquid. Environmental Science and Pollution Research, 2020, vol. 27(24), рр. 30479–30489. http://doi.org/10.1007/s1135602009332-9.

14. Lapin I. N., Shabalina A. V., Svetlichnyi V. A. Synthesis and characterization of CeO2. Key Engineering Materials, 2016, vol. 683, рр. 281–287. http://doi.org/10.4028/www.scientific.net/KEM.683.281.

15. Yoshihiro T., Fumitaka M. Formation of wide bandgap cerium oxide nanoparticles by laser ablation in aqueous solution. Chemical Physics Letters, 2014, vol. 599 рр. 110–115. http://doi.org/10.1016/j.cplett.2014.03.026.

16. Trenque I., Magnano G. C., Bárta J., eds. Synthesis routes of CeO2 nanoparticles dedicated to organophosphorus degradation: a benchmark. CrystEngComm, 2020, vol. 22, рр. 1725–1737. http://doi.org/10.1039/c9cE01898K.

17. Aung Ney Vin, Mamontov V. A., Pugachevskii M. A. [Formation of CeO2 nanoparticles by laser ablation]. Nanotekhnologii: obrazovaniye, nauka, innovatsii. Sbornik statey X Vserossiyskoy nauchno-prakticheskoy konferentsii [Nanotechnologies: education, science, innovations. Сollection of articles of the X All-Russian Scientific and Practical Conference]; ed. by P. A. Belov. Kursk, Kursk St. Univ. Publ., 2019, рр. 132–134. (In Russ.)

18. Pugachevsky M. A. Formirovanie structurnyh defektov v nanochastitsah CeO2 pri lazernoy ablyatsii [Formation of structural defects in CeO2 nanoparticles during laser ablation]. Pis'ma v zhurnal tekhnicheskoi fiziki = Letters to the Journal of Technical Physics, 2017, vol. 43, В. 15, рр. 28–33. http://doi.org/10.21883/PJTF.2017.15.44867.16821

19. Myungjoon K., Saho O., Taesung K., Hidenori H., Takafumi S. Synthesis of nanoparticles by laser ablation: a review. KONA Powder and Particle Journal, 2017, is. 34, рр. 80– 90. http://doi.org/10.14356/kona.2017009.

20. Pugachevsky M. A., Mamontov V. A., Nei Vin Aung, Chekadanov A. S., Kuzmen- ko A. P. Polucheniye ablirovannykh chastits CeO2 s nanodispersnym raspredeleniyem po sostavu [Preparation of ablated CeO2 particles with nanodisperse distribution by composition]. Pis'ma v zhurnal tekhnicheskoi fiziki = Letters to the Journal of Technical Physics, 2020, vol. 46, В. 20, рр. 38–41. http://doi.org/10.21883/PJTF.2020.20.50155.18286

21. Wu L. J., Wiesmann H. J., Moodenbaugh A. R., Klie R. F., Zhu Y., Welch D. O., Suenaga M. Oxidation state and lattice expansion of CeO2–x nanoparticles as a function of particle size. Phys. Rev. B., 2004, vol. 69, р. 125415-1. http://doi.org/10.1103/PhysRevB.69.125415.

22. Deshpande S., Patil S., Kuchibhatla S. V. N. T., Seal S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys., 2005, vol. 87, рр. 133113. http://doi.org/10.1063/1.2061873.

23. Pugachevskii M. A., Chibisov A. N., Kuzmenko A. P., Fedorov A. S. Theoretical and experimental studies of structural defects in CeO2 nanoparticles. Solid State Phenomena, 2020, vol. 312, рр. 68–73. http://doi.org/10.4028/www.sceintific.net/SSP.312.68.

24. Pugachevskii M. A., Panfilov V. I. Opticheskiye svoystva nanochastits HfO2, ablirovannykh lazernym izlucheniyem [Optical properties of HfO2 nanoparticles ablated by laser radiation]. Zhurnal prikladnoy spektroskopii = Journal of Applied Spectroscopy, 2014, vol. 81, no. 4, рр. 586–589.

25. Pugachevskii M. A. Ultraviolet absorption spectrum of laser-ablated titanium dioxide nanoparticles. Technical Physics Letters, 2013, vol. 39, no. 1, рр. 36–38. http://doi.org/10.1134/s1063785013010239.

26. Vazirov R. A., Sokovnin S. Yu., Ilves V. G. [Antioxidant properties of cerium dioxide nanoparticles]. Fiziko-himicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov. Mezhvuzovskii sbornik nauchnyh trudov [Physicochemical aspects of studying clusters, nanostructures and nanomaterials: interuniversity collection of scientific papers]; ed. by V. M. Samsonov, N. Yu. Sdobnyakov. Tver, Tver St. Publ. Univ., 2018, vol. 10, pp. 196–203. (In Russ.) http://doi.org/10.26456/pcascnn/2018.10.196.


Review

For citations:


Mamontov V.A., Ryzhenkova A.Y., Pugachevsky M.A., Niyazi F.F. Research of the Physical and Chemical Properties of Ablated Cerium Dioxide Nanoparticles in the Photocatalytic Process. Proceedings of the Southwest State University. Series: Engineering and Technology. 2021;11(4):78-94. (In Russ.) https://doi.org/10.21869/2223-1528-2021-11-4-78-94

Views: 202


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)