Charge Obtained by Electrodispersing Waste of Alloy H20H80 in Water
https://doi.org/10.21869/2223-1528-2021-11-4-38-52
Abstract
The purpose of this study was to study the characteristics of the charge obtained by electrodispersing the waste of the alloy Н20N80 in distilled water.
Methods. Electrodispersion of waste of alloy Н20N80 was carried out in a dispersant. The tasks set in the work were solved using modern equipment and complementary methods of physical materials science, including: the shape and morphology of the particle surface was studied on an electron-ion scanning (scanning) microscope with field electron emission "QUANTA 600 FEG" (Netherlands); the granulometric composition was studied on a laser particle size analyzer "Analysette 22 NanoTec" (Germany); X-ray spectral microanalysis of particles was carried out on an energy dispersive X-ray analyzer of the company "EDAX" (the Netherlands), integrated into a scanning electron microscope "QUANTA 200 3D" (the Netherlands); phase analysis of particles was studied on an X-ray diffractometer "Rigaku Ultima IV" (Japan); the microstructure of particles was studied on an optical inverted microscope "OLYMPUS GX51" (Japan) and an electron-ion scanning (scanning) microscope with a field electron emission "QUANTA 600 FEG" (Netherlands). Results. Based on the conducted experimental studies aimed at studying the composition, structure and properties of the charge obtained from the waste of the alloy X20N80 in distilled water, the high efficiency of the use of electrodispersion technology, which provides, at low energy costs, the production of new nichrome powder materials suitable for industrial use, is shown. It is noted that powder materials obtained by electroerosion of Н20N80 alloy waste in kerosene have the following characteristics: spherical and elliptical particles, agglomerates; particle sizes from 0.25 to 100 microns; the volumetric average diameter of the particles is 34.12 microns; the main elements are Fe, Ni, Cr and C; the main phases are Fe, Ni, Cr and Cr2О3.
Conclusion. The conducted research will allow for a gradual transition to advanced production technologies and materials through the use of progressive, environmentally friendly, low-tonnage and waste-free electro dispersion technology for the production of new nichrome powder materials from waste alloy Н20N80 in distilled water.
About the Authors
O. V. KruglyakovRussian Federation
Oleg V. Kruglyakov, Cand. of Sci. (Engineering), Associate Professor, Associate Professor of the Department of Materials and Transport Technology
50 Let Oktyabrya str. 94, Kursk 305040
E. V. Ageeva
Russian Federation
Ekaterina V. Ageeva, Cand. of Sci. (Engineering), Associate Professor, Associate Professor of the Department of Materials Technology and Transport
50 Let Oktyabrya str. 94, Kursk 305040
E. A. Bobkov
Russian Federation
Evgeny A. Bobkov, Post-Graduate Student of the Department of Materials and Transport Technology
50 Let Oktyabrya str. 94, Kursk 305040
References
1. Danilenko V. N. Vliyanie iskhodnoi struktury na formirovanie submikro-kristallicheskogo sostoyaniya v nikhrome [Influence of the initial structure on the formation of the submicrocrystalline state in nichrome]. Perspektivnye materialy = Perspective materials, 2004, no. 1, pp. 12–16.
2. Lovshenko F. G., Lovshenko G. F., Lovshenko Z. M. Optimizatsiya sostava mekhanicheski legirovannykh dispersno-uprochnennykh nikhromov [Optimization of the composition of mechanically alloyed dispersed-hardened nichromes]. Vestnik Belorussko-Rossiiskogo universiteta = Bulletin of the Belarusian-Russian University, 2009, no. 4 (25), pp. 90–99.
3. Lovshenko F. G., Lovshenko G. F. Optimizatsiya protsessa mekhanicheskogo legirovaniya pri poluchenii vysokoprochnykh nanostrukturnykh dispersno-uprochnennykh nikhromov [Optimization of the process of mechanical alloying in the production of highstrength nanostructured dispersed-hardened nichromes]. Vestnik Belorussko-Rossiiskogo universiteta = Bulletin of the Belarusian-Russian University, 2010, no. 2 (27), pp. 77–85.
4. Kozlovskikh N. F., Kotelnikov V. P., Snigirev A. I., Zheleznyak L. M., Ustyantsev V. L. Osvoenie tekhnologii proizvodstva provoloki i polos iz nikhroma [Mastering the technology of production of wire and strips from nichrome]. Tsvetnye metally = Non-ferrous metals, 2003, no. 10, pp. 82–84.
5. Malafeev S. I., Konyashin V. I. Approksimatsiya kharakteristiki soprotivleniya deformatsii nikhroma [Approximation of the deformation resistance characteristics of nichrome]. Proizvodstvo prokata = Manufacture of rolled products, 2013, no. 3, pp. 9–13.
6. Zheleznyak L. M., Snigirev A. I., Snigirev N. A., Ashkanov S. E., Ovchinnikov V. V. Obespechenie stabil'nosti volocheniya i kachestva polos iz nikhroma i ferro-nikhroma [Ensuring the stability of drawing and the quality of nichrome and ferronichrome strips]. Stal' = Steel, 2014, no. 9, pp. 53–56.
7. Snigirev A. I., Zheleznyak L. M., Snigirev N. A., Burunov A. S. Sbornaya voloka dlya volocheniya polos iz nikhroma v rezhime gidrodinamicheskogo treniya [Combined portage for drawing nichrome strips in hydrodynamic friction mode]. Metallurg = Metallurgist, 2017, no. 2, pp. 87–89.
8. Ulyanitsky V. Yu., Batraev I. S., Solonenko O. P., Chesnokov A. E. Mikrostruktura i iznosostoikost' detonatsionnykh pokrytii iz SVS-poroshkov karbid titana – nikhrom razlichnogo fraktsionnogo sostava [Microstructure and wear resistance of detonation coatings from SHS powders titanium carbide - nichrome of various fractional composition]. Poverkhnost'. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya = Surface. X-ray, synchrotron and neutron studies, 2018, no. 3, pp. 67–73.
9. Dudova N. R., Valitov V. A., Kaibyshev R. O. Blizhnii poryadok i mekhanicheskie svoistva nikhroma [Near order and mechanical properties of nichrome]. Doklady Akademii nauk = Reports of the Academy of Sciences, 2009, vol. 424, no. 5, pp. 611–613.
10. Ageev E. V., Latypov R. A. Fabrication and investigation of carbide billets from powders prepared by electroerosive dispersion of tungsten-containing wastes. Russian Journal of Non-Ferrous Metals, 2014, vol. 55, no. 6, pp. 577–580.
11. Latypov R. A., Latypova G. R., Ageev E. V., Altukhov A. Y., Ageeva E. V. Elemental composition of the powder particles produced by electric discharge dispersion of the wastes of a VK8 hard alloy. Russian metallurgy (Metally), 2017, vol. 2017, no. 12, pp. 1083–1085.
12. Latypov R. A., Latypova G. R., Ageev E. V., Altukhov A. Y., Ageeva E. V. Properties of the coatings fabricated by plasma-jet hard-facing by dispersed mechanical engineering wastes. Russian metallurgy (Metallically), 2018, vol. 2018, no. 6, pp. 573–575.
13. Ageev E. V., Semenikhin B. A., Latypov R. A., Anikanov V. I. Ustanovskaya dlya polucheniya nanodispersnykh poroshkov iz tokoprovodyashchikh materialov [Installation for obtaining nanodisperse powders from conductive materials]. Patent RF, no. 2449859, 2012.
14. Ageeva E. V., Zubarev M. V. Ustanovka dlya polucheniya poroshkovykh materialov, prigodnykh dlya tekhnologicheskikh protsessov vosstanovleniya i uprochneniya detalei [Installation for obtaining powder materials suitable for technological processes of restoration and hardening of parts]. Trudy GOSNITI = Works of GOSNITI, 2017, vol. 129, pp. 169–173.
15. Ageeva E. V., Ageev E. V., Karpenko V. Yu. Izuchenie formy i elementnogo sostava poroshka, poluchennogo iz vol'framsoderzhashchikh otkhodov instrumental'nykh materialov elektroerozionnym dispergirovaniem v vodnoi srede [Study of the form and elemental composition of powder obtained from tungsten-containing waste of tool materials by electroerosive dispersion in an aqueous medium]. Uprochnyayushchie tekhnologii i pokrytiya = Hardening technologies and coatings, 2014, no. 4 (112), pp. 14–17.
16. Ageeva E. V., Ageev E. V., Chaplygin V. Yu., Gorokhov A. A. Razmernye kharakteristiki bronzovogo elektroerozionnogo poroshka, polu-chennogo v vode [Dimensional characteristics of bronze electroerosion powder obtained in water]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Teknika i Technologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2016, no. 1 (18), рp. 30–35.
17. Latypov R. A., Ageev E. V., Latypova G. R., Altukhov A. Yu., Ageeva E. V. Elementnyi sostav chastits poroshkov, poluchennykh elektroerozionnym dispergirovaniem otkhodov tverdogo splava marki VK8 [Elemental composition of powder particles obtained by electroerosive dispersion of solid alloy waste of the VK8 brand]. Elektrometallurgiya = Electrometallurgy, 2017, no. 11, pp. 26–31.
18. Ageev E. V., Latypova G. R., Davydov A. A., Ageeva E. V. Provedenie rentgenospektral'nogo mikroanaliza tverdosplavnykh elektroerozionnykh poroshkov [Conducting X-ray spectral microanalysis of carbide electroerosion powders]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2012, no. 5 (44), pt. 2, pp. 99–102.
19. Ageev E. V., Gadalov V. N., Ageeva E. V., Bobryshev R. V. Poroshki, poluchennye elektroerozionnym dispergirovaniem otkhodov tverdykh splavov – perspektivnyi material dlya vosstanovleniya detalei avtotrak-tornoi tekhniki [Powders obtained by electroerosive dispersion of solid alloy waste – a promising material for the restoration of parts of automotive equipment]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2012, no. 1 (40), pt. 1, pp. 182–189.
20. Ageev E. V., Latypova G. R., Davydov A. A., Ageeva E. V. Otsenka effektivnosti primeneniya tverdosplavnykh elektroerozionnykh poroshkov v kachestve elektrodnogo materiala [Evaluation of the effectiveness of the use of carbide electroerosion powders as an electrode material]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University. Series: Engineering and Technology, 2012, no. 1, pp. 19– 22.
21. Ageev E. V., Semenikhin B. A., Ageeva E. V., Latypov R. A. Issledovanie khimicheskogo sostava poroshkov, poluchennykh elektroerozionnym dispergirovaniem tverdogo splava [Investigation of the chemical composition of powders obtained by electroerosive dispersion of a hard alloy]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proce- edings of the Southwest State University, 2011, no. 5 (38), pt. 1, pp. 138a–144.
22. Ageev E. V., Latypova G. R., Davydov A. A., Ageeva E. V. Provedenie rentgenospektral'nogo mikroanaliza tverdosplavnykh elektroerozionnykh poroshkov [Conducting X-ray spectral microanalysis of carbide electroerosive powders]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2012, no. 5 (44), pt. 2, pp. 99–102.
Review
For citations:
Kruglyakov O.V., Ageeva E.V., Bobkov E.A. Charge Obtained by Electrodispersing Waste of Alloy H20H80 in Water. Proceedings of the Southwest State University. Series: Engineering and Technology. 2021;11(4):38-52. (In Russ.) https://doi.org/10.21869/2223-1528-2021-11-4-38-52