Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

The Process of Pressing and Sintering a Charge of the SSu-3 Lead-Antimony Alloy Obtained by Electroerosive Dispersion

https://doi.org/10.21869/2223-1528-2021-11-4-8-21

Abstract

The purpose of this study is to manufacture blanks from the charge obtained by the method of electroerosion dispersion, lead-antimony alloy - SSu3, under certain pressing and sintering parameters, to determine the effect of pressure on the density of the final blanks, as well as to find shrinkage dependencies during the sintering operation.

Methods. To perform this study, a charge of lead-antimony alloy - SSu3, obtained by the method of electroerosive dispersion, was required. The pressing process was carried out in a mold specially designed for this study on a NORDBERG N3612 hydraulic floor press in two modes under load - 2.5 and 5 t. respectively, the holding time under pressure in both cases was 10 minutes. Sintering was carried out in a graphite crucible, which was placed in an oven for heating the molds EKPS - 10, where a constant temperature of 296 degrees is maintained for 120 minutes. 

Results. Experimentally, it was found that when the force is doubled, the density of the workpiece increases by 2%, which is due to a closer interaction between metal particles. It is noted that in order to create products with greater porosity, it is necessary to reduce the pressure during pressing, and to create products with greater hardness, more pressure is needed. The difference in the color of the workpieces is due to the degree of oxidation of the charge with oxygen during the cooling of the briquettes after pressing, the compounds of the alloy elements change during its oxidation with oxygen, oxides and lead peroxides are formed, which in turn affect the chemical properties of the alloy. Gray color has a low content of oxygen oxides, and brown, up to orange, is characterized by a high content of lead peroxides.

Conclusion. The obtained results can be used for further study and improvement of the composition and structure of the alloy, as well as for the selection of optimal modes of pressing and sintering in further studies.

About the Authors

E. V. Ageeva
Southwest State University
Russian Federation

Ekaterina V. Ageeva, Cand. of Sci. (Engineering),  Associate Professor, Associate Professor  of the Department of Materials Technology and Transport

50 Let Oktyabrya str. 94, Kursk 305040



O. G. Lоktionova
Southwest State University
Russian Federation

Oksana G. Lоktionova, Dr. of Sci. (Engineering), Professor

50 Let Oktyabrya str. 94, Kursk 305040



M. S. Korolev
Southwest State University
Russian Federation

Mikhail S. Korolev, Post-Graduate Student  of the Department of Materials and Transport Technology

50 Let Oktyabrya str. 94, Kursk 305040



References

1. Libenson G. A., Lopatin V. Yu., Komarntsky G. V. Protsessy poroshkovoi metallurgii. Vol. 1. Proizvodstvo metallicheskikh poroshkov [Processes of powder metallurgy. Vol. 1. Production of metal powders]. Moscow, MISIO Publ., 2001. 368 p.

2. Krepysheva E. I. [Research and operating principles of energy storage devices on the example of a lead-acid battery and an ionistor]. Budushchee nauki – 2019. Sbornik nauchnykh statei 7-i Mezhdunarodnoi molodezhnoi nauchnoi konferentsii [Future of Science – 2019. Collection of scientific articles of the 7th International Youth Scientific Conference]. Kursk, 2019, pp. 200–203. (In Russ.)

3. Huusken R. Prepyatstvuyushchie sul'fatirovaniyu prikleivaemye plity dlya svintsovokislotnykh akkumulyatorov [Anti-sulfation adhesive plates for lead-acid batteries]. CAPITAL, ELS (US). Patent RF, no. 2686667, 2019.

4. Alvear G., Arthur P., Partington P. Feasibility to Profitability with Copper ISASMELT ™. Proceedings of Copper 2010. Hamburg, Germany, 2010, vol. 1, pp. 21–24.

5. Shutkova O. A., Osipov A. Yu. Svintsovo kislotnyi akkumulyator s indikatorom stepeni zaryazhennosti [Lead-acid battery with indicator of the degree of charge]. Patent RF 179473, 2018.

6. Errington B., Arthur P., Wang J., Dong Y. The ISA-YMG Lead Smelting Process. Proceedings of the International Symposium on Lead and Zinc Processing. Kyoto, Japan, 2005, pp. 581–599.

7. Ageeva E. V., Korolev M. S., Vorobiev Yu. S. Issledovanie elementnogo sostava svintsovo-sur'myanistykh splavov metodom rentgenofluorestsentnogo analiza [Investigation of the elemental composition of lead-antimony alloys by the method of ren-genofluorescence analysis]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2020, vol. 10, no. 4, pp. 8–21.

8. Korolev M. S., Ageeva E. V. [Study of the properties of lead-antimony alloys]. Sovremennye avtomobil'nye materialy i tekhnologii (SAMIT – 2020). Sbornik statei XII Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii [Modern automotive materials and technologies (SAMIT - 2020). Collection of articles of the XII International scientific and technical conference]. Kursk, Universitetskaya kniga Publ., 2020, pp. 188–194. (In Russ.)

9. Yonglang G. In situ electrochemical scan to study the behavior of the asymmetric (single-side) pasted positive plate as used in automotive lead-acid batteries. J. Appl. Electrochem, 2006, vol. 36, no. 3, pp. 363−368.

10. Pogosyan A. A., Besser A. D., Sorokina B. C. Pererabotka ispol'zovannykh akkumulyatorov – osnova retsiklinga svintsa [Recycling of used accumulators - the basis of lead recycling]. Moscow, FGUP TsNIIATOMINFORM, 2005. 256 p.

11. Kolosovskiy V. V., Silenko V. N. Netraditsionnye vozobnovlyaemye istochniki energii [Non-traditional renewable energy sources]. St. Petersburg, St. Petersburg St. Agrarian Univ. Publ., 2004. 104 p.

12. Shlykov V. А., Emelyanov S. G. Sposob izgotovleniya akkumulyatora svintsovokislotnoi sistemy s poverkhnostnymi elektrodami [A method of manufacturing a lead-acid system accumulator with surface electrodes]. Patent RF, no. 2634591, 2017.

13. Ageev E. V., Gorokhov A. A., Altukhov A. Yu., Shcherbakov A. V., Hardikov S. V. Rentgenospektral'nyi mikroanaliz nikhromovogo poroshka, poluchennogo metodom elektroerozionnogo dispergirovaniya v srede kerosina [X-ray spectral microanalysis of nichrome powder obtained by electroerosive dispersion in kerosene medium]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2016, no. 1 (64), pp. 26–31.

14. Ageev E. V., Khor'yakova N. M., Novikov E. P., Korolev M. S. Issledovanie poristosti splava VNZh, spechennogo iz elektroerozionnykh poroshkov, poluchennykh v vode [Investigation of porosity of VNZh alloy sintered from electroerosive powders obtained in water]. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of the Volgograd State Technical University, 2021, no. 7 (254), pp. 32–35. https://doi.org/10.35211/1990-5297-2021-7-254-32-35.

15. Ageeva E. V., Korolev M. S. Poluchenie poroshkovogo materiala iz svintsovo-sur'myanistoi plastiny kislotnogo akkumulyatora [Obtaining powder material from a lead-antimony plate of an acid accumulator]. Sovremennye materialy, tekhnika i tekhnologii = Modern materials, equipment and technologies, 2021, no. 1 (34), pp. 4–12. https://doi.org/10.47581/2021/SMTT/34.1.001.

16. Ageev E. V., Altukhov A. Y., Korolyov M. S. [The phase composition of products from electro-erosive cobaltochrome powders, obtained by additive technologies]. Solid State Phenomena, 2020, vol. 299, pp. 611–616. https://doi.org/10.4028/www.scientific.net/SSP. 299.611.

17. Sabel'nikov B. N., Ageeva A. E., Podanov V. O., Korolev M. S. Investigation of the microstructure and X-ray spectral microanalysis of powder material obtained from waste of the KNT16 brand tungsten-free hard alloy. MATEC Web Conf., 2020, vol. 329, pp. 02011.

18. Ageev E. V., Harakova N. M., Pikalov S. V., Korolev M. S., Potapov V. O. Study of the fractional composition of electroerosive powder materials of the tungsten nickel iron alloy obtained in lighting kerosene. MATEC Web Conferences, 2020, vol. 329, pp. 02013. https://doi.org/10.1051/matecconf/202032902013/.

19. Ageev E. V., Latypova G. R., Davydov A. A., Ageeva E. V. Provedenie rentgenospektral'nogo mikroanaliza tverdosplavnykh elektroerozionnykh poroshkov [X-ray spectral microanalysis of hard-alloy electroerosive powder]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2012, no. 5 (44), pt. 2, pp. 99–102.

20. Ageev E. V., Gadalov V. N., Ageeva E. V., Bobryshev R. V. Poroshki, poluchennye elektroerozionnym dispergirovaniem otkhodov tverdykh splavov – perspektivnyi material dlya vosstanovleniya detalei avtotraktornoi tekhniki [Powders obtained by electroerosive dispersion of hard alloys wastes are a promising material for the restoration of parts of automotive and tractor equipment]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2012, no. 1 (40), pt. 1, pp. 182–189.

21. Ageev E. V., Latypova G. R., Davydov A. A., Ageeva E. V. Otsenka effektivnosti primeneniya tverdosplavnykh elektroerozionnykh poroshkov v kachestve elektrodnogo materiala [Evaluation of the effectiveness of the use of hard-alloy electroerosive powders as an electrode material]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2012, no. 1, pp. 19–22.

22. Ageev E. V., Semenikhin B. A., Ageeva E. V., Latypov R. A. Issledovanie khimicheskogo sostava poroshkov, poluchennykh elektroerozionnym dispergirovaniem tverdogo splava [Investigation of the chemical composition of powders obtained by electroerosive dispersion of hard alloy]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proce- edings of the Southwest State University, 2011, no. 5. (38), pt. 1, pp. 138a–144.


Review

For citations:


Ageeva E.V., Lоktionova O.G., Korolev M.S. The Process of Pressing and Sintering a Charge of the SSu-3 Lead-Antimony Alloy Obtained by Electroerosive Dispersion. Proceedings of the Southwest State University. Series: Engineering and Technology. 2021;11(4):8-21. (In Russ.) https://doi.org/10.21869/2223-1528-2021-11-4-8-21

Views: 115


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)