Study of the Photocatalytic Activity of Zinc Oxide in a Magnetic Field
https://doi.org/10.21869/2223-1528-202212-2-183-195
Abstract
Purpose of the study. Study of the influence of an external stationary magnetic field on the process of photocatalytic degradation of methylene blue in the presence of ultrafine particles of zinc oxide and under the influence of ultraviolet radiation.
Methods. Determination of the degree of photochemical degradation of the dye methylene blue by optical spectrometry using a set of spectrophotometric equipment based on SF-2000 and HR-2000 spectrophotometers. Characterization of the size distribution of photocatalytic zinc oxide particles using SmartSPM atomic force microscopy (AIST-NT), elemental composition on a JEOL 6610LV scanning electron microscope with an energy dispersive analysis attachment
(Oxford), structure and phase composition using X-ray phase analysis on an EMMA X-ray powder diffractometer (Australia).
Results. Dispersed zinc oxide particles synthesized by the sol-gel method have a size from 30 to 120 nm with an average quantitative size of 60 nm. The crystallographic structure of the photocatalyst at interplane distances corresponds to the zinc monoxide of the hexagonal syngony. An analysis of the data on the process of photocatalytic degradation of methylene blue shows that the photoactivity of zinc oxide particles increases significantly under the action of an external stationary magnetic field. Thus, it was established that in a constant magnetic field of 0,56 Tl, the photocatalytic activity of ZnO particles increases by 20%.
Conclusion. Based on the experimental data obtained, it can be concluded that the introduction of a constant magnetic field can significantly increase the rate of photocatalytic decomposition of methylene blue. The presented results can be applied to industrial water purification from pollutants. By changing the magnitude of the magnetic field, it is possible to control the intensity of decomposition of pollutants.
Keywords
About the Authors
D. S. RassekoRussian Federation
Dmitry S. Rasseko, Post-Graduate Student of the Department of the of Nanotechnology, Microelectronics, and Engineering Physics
50 Let Oktyabrya str. 94, Kursk 305040
M. A. Pugachevskii
Russian Federation
Maksim A. Pugachevskii, Dr. of Sci. (Physics and Mathematics), Leading Researcher of the Regional Center of Nanotechnology
50 Let Oktyabrya str. 94, Kursk 305040
N. W. Aung
Russian Federation
Nei Win Aung, Post-Graduate Student of the Department of the of Nanotechnology, Microelectronics, and Engineering Physics
50 Let Oktyabrya str. 94, Kursk 305040
A. P. Kuzmenko
Russian Federation
Alexander P. Kuzmenko, Dr. of Sci. (Physics and Mathematics), Professor, Chief Researcher of the Regional Center for Nanotechnology
50 Let Oktyabrya str. 94, Kursk 305040
References
1. A multifunctional biphasic water splitting catalyst tailored for integration with highperformance semiconductor photoanodes / J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, I. D. Sharp // Nature Material. 2017. Vol. 16. Р. 335–341. https://doi.org/10.1038/nmat4794.
2. Understanding TiO2 photocatalysis mechanisms and materials / J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann // Chem. Rev. 2014. Vol. 114, no. 9. P. 9919−9986. https://doi.org/10.1021/cr5001892.
3. Colmenares J. C., Luque R. Heterogeneous photocatalytic nanomaterials: Prospects and challenges in selective transformations of biomass-derived compounds // Chem. Soc. Rev. 2014. Vol. 43. Р. 765–778. https://doi.org/10.1039/C3CS60262A.
4. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations / S. Bai, J. Jiang, Q. Zhang, Y. Xiong // Chem. Soc. Rev. 2015. Vol. 44 (10). Р. 2893–2839. https://doi.org/10.1039/C5CS00064E.
5. Full-spectrum solar-light-activated photocatalysts for light-chemical energy conversion / X. Wang, F. Wang, Y. Sang, H. Liu // Advanced Energy Materials. 2017. Vol. 7, no. 23. P. 1700473. https://doi.org/10.1002/aenm.201700473.
6. An amorphous carbon nitride photocatalyst with greatly extended visible-lightresponsive range for photocatalytic hydrogen generation / Y. Kang, Y. Yang, L. C. Yin, X. Kang, G. Liu, H. M. Cheng // Advaneed Materials. 2015. Vol. 27 (31). Р. 4572-7. https://doi.org/10.1002/adma.201501939.
7. Visible light photocatalysis of Methylene blue by graphene-based ZnO and Ag/AgCl nanocomposites / M. Vanitha, Keerthi, S. Vadivel, N. Balasubramanian // Desalination and Water Treatmen. 2015. Vol. 54, no. 10. P. 2748–2756. https://doi.org/10.1080/19443994.2014.903207.
8. Chen Y.-W., Hsu Y.-H. Effects of reaction temperature on the photocatalytic activity of TiO2 with Pd and Cu cocatalysts // Catalysts. 2021. Vol. 11, no. 8 P. 966. https://doi.org/10.3390/catal11080966.
9. Photocatalysis enhanced by external fields / C. Hu, S. Tu, N. Tian, T. Ma, Y. Zhang, H. Huang // Angewandte Chemie. 2021. Vol. 133, no. 30. P. 16445–16464. https://doi.org/10.1002/ange.202009518.
10. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes / X. Chen, Z. Wu, D. Liu, Z. Gao // Nanoscale Research Letters. 2017. Vol. 12, no. 1. P. 143. https://doi.org/10.1186/s11671-017-1904-4.
11. One-step pyrolytic synthesis of ZnO nanorods with enhanced photocatalytic activity and high photostability under visible light and UV light irradiation / N. Huang, J. Shu, Z. Wang, M. Chen, C. Ren, W. Zhang // Journal of Alloys and Compounds. 2015. Vol. 648. P. 919–929. https://doi.org/10.1016/j.jallcom.2015.07.039.
12. Khan M. M., Lee J., Cho M. H. Au/TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: An electron relay effect // Journal of Industrial and Engineering Chemistry. 2014. Vol. 20, no. 4. P. 1584–1590. https://doi.org/10.1016/j.jiec.2013.08.002.
13. Pugachevskii M. A. Photocatalytic properties of titania nanoparticles obtained by laser ablation // Nanotechnologies in Russia, 2013, Vol. 8, no. 7–8. P. 432–436. https://doi.org/10.1134/S1995078013040125
14. Suppressing photoinduced charge recombination via the lorentz force in a photocatalytic system / W. Gao, J. Lu, S. Zhang, X. Zhang, Z. Wang, W. Qin, J. Wang, W. Zhou, H. Liu, Y. Sang // Advanced Science. 2019. Vol. 6, no. 18. P. 1901244. https://doi.org/10.1002/advs.201901244.
15. Magnetic field-enhancing photocatalytic reaction in micro optofluidic chip reactor / H. J. Huang, Y. H. Wang, Y.-F. C. Chau, H.-P. Chiang, J. C.-S. Wu // Nanoscale Research Letters. 2019. Vol. 14, no. 1. P. 323. https://doi.org/10.1186/s11671-019-3153-1.
16. Investigation of photocatalytic activity through photo-thermal heating enabled by Fe3O4/TiO2 composite under magnetic field / L. Shi, X. Wang, Y. Hu, Y. He // Solar Energy. 2020. Vol. 196. P. 505–512. https://doi.org/10.1016/j.solener.2019.12.053.
17. Lu Y., Ren B., Chang S., Mi W., He J., Wang W. Achieving effective control of the photocatalytic performance for CoFe2O4/MoS2 heterojunction via exerting external magnetic fields // Materials Letters. 2020. Vol. 260. P. 126979. https://doi.org/10.1016/j.matlet.2019.126979.
18. The effect of a 0.5 T magnetic field on the photocatalytic activity of recyclable ND-modified BiFeO3 magnetic catalysts / R. Dhanalakshmi, P. Reddy Vanga, M. Ashok, N. V. Giridharan // IEEE Magnetics Letters. 2016. Vol. 7. P. 1–4. https://doi.org/10.1109/LMAG.2016.2610406.
19. Enhanced photocatalytic performance through magnetic field boosting carrier transport / J. Li, Q. Pei, R. Wang, Y. Zhou, Z. Zhang, Q. Cao, D. Wang, W. Mi, Y. Du // ACS Nano. 2018. Vol. 12, no. 4. P. 3351–3359. https://doi.org/10.1021/acsnano.7b08770.
20. Effect of static magnetic field on photocatalytic degradation of methylene blue over ZnO and TiO2 powders / S. Joonwichien, E. Yamasue, H. Okumura, K. N. Ishihara // Applied Magnetic Resonance. 2012. Vol. 42, no. 1. P. 17–28. https://doi.org/10.1007/s00723-0110270-0.
21. Okumura H. Magnetic field effect (MFE) on heterogeneous photocatalysis and the role of oxygen // International Journal of Magnetics and Electromagnetism. 2016. Vol. 2, no. 1. P. 1–2. https://doi.org/10.35840/2631-5068/6504.
Review
For citations:
Rasseko D.S., Pugachevskii M.A., Aung N.W., Kuzmenko A.P. Study of the Photocatalytic Activity of Zinc Oxide in a Magnetic Field. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(2):183-195. (In Russ.) https://doi.org/10.21869/2223-1528-202212-2-183-195