Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Formation and Properties of Quasi-Crystalline Films on the Surface of Crystals Under Irradiation with Proton–Ion Fluxes

https://doi.org/10.21869/2223-1528-2022-12-2-146-165

Abstract

Purpose of research. The study of the features of the formation of quasicrystalline films and the conditions for the formation of quantum dots in their structure as electromagnetic traps for electrons or protons.

Methods. A method of modeling the structure of clusters in the approximation of absolutely hard spheres on the principles of close packing of particles and the rule of the "golden section" is applied.

Results. It is shown that in the structure of quasicrystalline films, the formation of quantum dots is possible, which are potential wells of various shapes with quantized motion of an electron or proton. In the case of an electron in a potential well, such a well becomes a source of electromagnetic radiation in the ultraviolet region of the spectrum; in the case of a proton in a potential well, the radiation of a quantum dot is in the infrared region of the spectrum.

Conclusion. When a crystal surface is irradiated with proton-ion fluxes with a certain ratio of the diameters of the atoms of the irradiated metal and the ions of the irradiating flux, a quasicrystalline film with a densest packing of atoms can form on the crystal surface. In the structure of the quasicrystalline film, atom-free regions of the order of 1 Å in size are formed, which are traps for protons from the irradiating flux, so a quantum dot appears.

The atomic packing of a quasicrystalline film is a packing of equilateral Penrose rhombuses at the vertices of which are the centers of mass of atoms.

A mathematical relation is obtained that allows one to predict the radii of the ions of the irradiating flow for the formation of a quasicrystalline film and to choose the atomic composition of the resulting film with predetermined properties.

About the Authors

G. A. Melnikov
Southwest State University
Russian Federation

Gennady A. Melnikov, Cand. of Sci. (Physics and Mathematics), Senior Researcher of the  Departments of Nanotechnology, Microelectronics, General and Applied Physics

50 Let Oktyabrya str. 94, Kursk 305040



N. M. Ignatenko
Southwest State University
Russian Federation

Nikolay M. Ignatenko, Dr. of Sci. (Physics and Mathematics), Professor of the Departments of Nanotechnology, Microelectronics, General and Applied Physics

50 Let Oktyabrya str. 94, Kursk 305040



L. P. Petrova
Southwest State University
Russian Federation

Ludmila P. Petrova, Cand. of Sci. (Physics and Mathematics), Associate Professor of the  Departments of Nanotechnology, Microelectronics, General and Applied Physics

50 Let Oktyabrya str. 94, Kursk 305040



V. V. Suchilkin
Southwest State University
Russian Federation

Vadim V. Suchilkin, Senior lecturer of the  Departments of Nanotechnology, Micro- electronics, General and Applied Physics

50 Let Oktyabrya str. 94, Kursk 305040



A. S. Gromkov
Southwest State University
Russian Federation

Andrey S. Gromkov, Post-Graduate Student of the Departments of Nanotechnology, Microelectronics, General and Applied Physics

50 Let Oktyabrya str. 94, Kursk 305040



References

1. Shechtman D., Blech I., Gratias D., Cahn J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett., 1984, vol. 53, no. 20, pp. 1951– 1953.

2. Vekilov Yu. Kh., Chernikov M. A. Kvazikristally [Quasicrystals]. Uspekhi fizicheskikh nauk = Successes of physical sciences, 2010, vol. 180, no. 6, pp. 561–586.

3. Bendersky L. Quasicrystal with one-dimensional translational symmetry and a ten-fold rotation axis. Phys. Rev. Lett., 1985, vol. 54, pp. 2422.

4. Levine D., Steinhardt P. J. Quasicrystals: a new class of ordered structures. Phys. Rev. Lett., 1984, vol. 53, no. 26, pp. 2477–2480.

5. Abe E., Tsai A. Decagonal structure of Al72Ni20Co8 studied by atomic-resolution electron microscopy. J. of Non-Crystalline Solids, 2004, vol. 334–335, pp. 198–201. https://doi.org/10.1016/j.jnoncrysol.2003.11.038

6. Abe E., Yan Y., Pennycook S. J. R. Quasicrystals as cluster aggregates. Nat. Mater., 2004, vol. 3, pp. 759–767. https://doi.org/10.1038/nmat1244.

7. Kalugin P. A., Kitaev A. Yu., Levitov L. S. Al0,86Mn0,14 – shestimernyi kristall [Al0,86Mn0,14–six-dimensional crystal]. Pis'ma v zhurnal eksperimental'noi i teoreticheskoi fiziki = Letters to the Journal of Experimental and Theoretical Physics, 1985, vol. 41, pp. 119.

8. Madison A. E. Simmetriya kvazikristallov [Symmetry of quasicrystals]. Fizika tverdogo tela = Solid state Physics, 2013, vol. 55, no. 4, pp. 784–796.

9. Socolar J. E. S., Steinhardt P. J. Quasicrystals I. Definition and structure. Phys. Rev. B, 1986, vol. 34, pp. 596–616.

10. Yuvaraj Sah, Ranganath G. S. Optical diffraction in some Fibonacci structures. Optics Communications, 1995, vol. 114, pp. 18–24.

11. Melnikov G. A., Ignatenko N. M., Melnikov V. G., Cherkasov E. N., Manzhos O. A. The structure of small clusters and ir spectrum condensed matters. Journal of Nano- and Electronic Physics, 2015, vol. 7, no. 4, pp. 04087.

12. Melnikov G., Ignatenko N., Krasnych P., Melnikov V., Cherkasov E. Formation of cluster systems in condensed matter and IR spectra of liquids. IOP Conference Series: Materials Science and Engineering, 2016, vol. 110, pp. 012064. https://doi.org/10.1088/1757899X/110/1/012064.

13. Melnikov G. A., Ignatenko N. M., Melnikov V. G., Cherkasov E. N., Manzhos O. A. [Quasi-crystalline structure of cluster systems and nanoparticles]. Modelirovanie struktur, stroenie veshchestva, nanotekhnologii. Sbornik materialov III Mezhdunarodnoi nauchnoi konferentsii [Modeling of structures, structure of matter, nanotechnology. Collection of materials of the III International Scientific Conference]. Tula, Tula St. Lev Tolstoy Ped. Univ. Publ., 2016, pp. 43–48. (In Russ.)

14. Melnikov G., Ignatenko N., Petrova L., Suchilkin V., Gromkov A. Peculiarities of quasicrystalline films formation processes on crystal surface under irradiation with proton-ion flows. MATEC Web Conf., 2021, vol. 344, рр. 01009. https://doi.org/10.1051/matecconf/ 202134401009.

15. Melnikov G. A. Clusters of Fibonacci in the structure of condensed medium. News of universities. Physics, 2018, vol. 61, no. 9-2(729), pp. 207–210.

16. Melnikov G. A., Emelyanov S. G., Ignatenko N. M., Melnikov V. G., Manzhos O. A. The structural properties of disordered condensed medium in the framework of a cluster model. News of universities. Physics. 2018, vol. 61, no. 9-2(729), pp. 203–206.

17. Kalinina N. E., Kavats O. A., Fedchuk A. K. Mikrolegirovanie strontsiem lineinykh splavov, primenyaemykh v raketno-kosmicheskoi tekhnike [Micro-alloying with strontium of foundry alloys used in rocket and space technology]. Vestnik dvigatelestroeniya = Bulletin of Engine Building, 2006, no. 1, pp. 147–149.

18. Neeleshwar S., Chen C. L., Tsai C. B., Chen Y. Y., Chen C. C., Shyu S. G., Seehra M. S. Size-dependent of CdSe quantum dots. Phys. Rev. B, 2005, vol. 71, pp. 201307(R).

19. Deng Z., Zhao K., Gu B., Han W., Zhu J. L., Wang X. C., Li X., Liu Q. Q., Yu R. C., Goko T., Frandsen B., Liu L., Jinsong Zhang, Yayu Wang, Ning F. L., Maekawa S., Uemu- ra Y. J., Jin C. Q. New Diluted ftrrjmagnetic semiconductor Li(Zn,Mn)P, with decupled charge and spin djpung. Phys. Rev. B, 2013, vol. 88, pp. 081203(R).

20. Tkach N. V., Seti Yu. A. Evolyutsiya kvazistatsionarnykh sostoyanii elektrona v otkrytoi sfericheskoi kvantovoi tochke [Evolution of quasi-stationary electron states in an open spherical quantum dot]. Fizika tverdogo tela = Solid State Physics, 2009, vol. 51, is. 5, pp. 979–985.

21. Katanjan T. V. Elektronnye sostoyaniya i opticheskie svoistva tsilindricheskoi kvantovoi tochki s ogranichivayushchim potentsialom Morsa. Avtoref. diss. kand. fiz.-mat. nauk [Electronic states and optical properties of a cylindrical quantum dot with a limiting Morse potential. Cand. of Phys. and Mathemat. sci. abstract diss.]. Yerevan, 2016. 17 p.

22. Zegrya G. G., Konstantinov O. V., Matveentsev A. V. Struktura energeticheskikh kvantovykh urovnei v kvantovoi tochke, imeyushchei formu splyusnutogo tela vrashcheniya [The structure of energy quantum levels in a quantum dot having the shape of an oblate body of rotation]. Fizika i tekhnika poluprovodnikov = Physics and Technology of Semiconductors, 2003, vol. 37, vol. 3, pp. 234–238.

23. Flugge Z. adachi po kvantovoi mekhanike [Problems in quantum mechanics]. Vol. 1. Moscow, Mir Publ., 1974. 342 p.

24. Sofronov A. N., Balagula R. M., Firsov D. A., Vorobyev L. E., Tonkikh A. A., Sarkisyan A. A., Hayrapetyan D. B., Petrosyan L. S., Kazaryan E. M. Pogloshchenie izlucheniya dal'nego infrakrasnogo diapazona kvantovymi tochkami Ge/Si [Absorption of far infrared radiation by Ge/Si quantum dots]. Fizika i tekhnika poluprovodnikov =Physics and Technology of Semiconductors, 2018, vol. 52, is. 1, pp. 63–67.

25. Borodin Y., Zadorozhnaya T., Ghyngazov S. The effect of protonation on structural modification in layers. Materials Science Forum, 2019, vol. 942, pp. 21–29.

26. Sergeev A. N., Annenkov A. N., Sutulin S. N., Borodin Yu. V. Protonnoe modifitsirovanie oksidov i oksidnykh plenok [Proton modification of oxides and oxide films]. Moscow, Central Research Institute "Electronics", 1989. 55 p .

27. Sergeev A. N., Osadchev L. A., Frolova M. N., Sutulin S. N., Borodin Yu. V. Odnorodnye i neodnorodnye planki oksidnykh sistem [Homogeneous and inhomogeneous films of oxide systems]. Moscow, Central Research Institute "Electronics", 1989. 63 p .

28. Gasumyants V. E., Lykov S. N., Pshenai-Severin D. A., Rykov C. A., Firsov D. A. Razmernoe kvantovanie. Chast' 1. Energeticheskii spektr nanostruktur [Dimensional quantization. Part 1. Energy spectrum of nanostructures]; ed. by S. N. Lykov. St. Petersburg, St. Petersburg Polytechn. Univ. Publ., 2009. 258 p.

29. Grunt iz materikovogo raiona Luny [Soil from the mainland region of the Moon]; ed. V. L. Barsukov, Yu. A. Surkov. Moscow, Nauka Publ., 1979. 708 p.

30. Regel A. R., Glazov V. M. Fizicheskie svoistva elektronnykh rasplavov [Physical properties of electronic melts]. Moscow, Mir Publ., 1980. 209 p.

31. Mercury. NASA science. Exploration of the Solar System, 2022. Available: https://solarsystem.nasa.gov/planets/mercury/overview/. (accessed 17.03.2022)

32. Lozovik Yu. E., Volkov S. Yu. Upravlenie elektronnymi korrelyatsiyami v sfericheskoi kvantovoi tochke [Control of electronic correlations in a spherical quantum dot]. Fizika tverdogo tela = Solid State Physics, 2005, vol. 45, vol. 2, pp. 345.

33. Korolev N. V., Starodubtsev S. E., Bormontov E. N., Klinskikh A. F. Osobennosti elektronnogo spektra otkrytoi sfericheskoi kvantovoi tochki s del'ta-potentsialom [Features of the electronic spectrum of an open spherical quantum dot with delta potential]. Kondensirovannye sredy i mezhfaznye granitsy = Condensed media and interphase boundaries, 2011, vol. 13, no. 1, pp. 67–71.

34. Carnahan N. F., Starling K. E. Equation of state for nonattracting rigid spheres. J. Chem. Phys. 1969, vol. 51, pp. 635–636. https://doi.org/10.1063/1.1672048.

35. Bernal J. D. The Bakerian Lecture, 1962 The structure of liquids. Proc. R. Soc. Lond. A. 1964, vol. 280, pp. 299–322. https://doi.org/10.1098/rspa.1964.0147.

36. Berry R. S., Smirnov B. M. Fazovye perekhody v klasterakh razlichnykh tipov [Phase transitions in clusters of various types]. Uspekhi fizicheskikh nauk = Successes of physical sciences. 2009, vol. 179, no. 2, pp. 147–177.


Review

For citations:


Melnikov G.A., Ignatenko N.M., Petrova L.P., Suchilkin V.V., Gromkov A.S. Formation and Properties of Quasi-Crystalline Films on the Surface of Crystals Under Irradiation with Proton–Ion Fluxes. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(2):146-165. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-2-146-165

Views: 176


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)