Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

On the Possibility of Using Carbon Nanotubes with Impurity Boron Atoms as Filters for Environmental Needs

https://doi.org/10.21869/2223-1528-2022-12-2-130-145

Abstract

Purpose of the study. The purpose of this work is to conduct a model experiment to study the possibility of external adsorption capacity of carbon nanotubes containing impurity boron atoms in relation to fluorine and chlorine using modern quantum chemical calculation methods, namely density functional theory.

Methods. In order to clarify the mechanisms of adsorption of gas atoms onto the surface of borocarbon nanotubes and the dependence of these processes on the concentration of impurity boron atoms, the results of model experiments conducted using the density functional theory (DFT) were used.

Results. With an increase in the concentration of impurity boron atoms, positive effects are observed due to the greater electrical inhomogeneity of the structure under consideration. That is, a heterostructure based on the equilibrium concentration of boron and carbon is a very likely chlorine adsorbent. As in the case of atomic chlorine, the most probable adsorption centers upon addition of atomic fluorine are either the boron atom itself or the bonding center between boron and carbon.

Conclusion. Model experiments have allowed us to conclude that the introduction of impurity boron atoms into carbon nanotubes makes them a promising material for solving one of the key problems of modern society – protecting the environment and human health from harmful gases.

About the Author

S. V. Boroznin
Volgograd State University
Russian Federation

Sergey V. Boroznin, Cand. of Sci. (Physics and Mathematics), Associate Professor, Head of the Department of Forensic Examination and  Physical Materials Science Institute of Priority Technologies

100 Universitetskiy Ave., Volgograd 400062

Researcher ID: F-1124-2014



References

1. Review of fluoride removal from water environment by adsorption / J. He, Y. Yang, Z. Wu, C. Xie, K. Zhang, L. Kong, J. Liu // Journal of Environmental Chemical Engineering. 2020. Vol. 8, nо. 6. P. 104516. https://doi:10.1016/j.jece.2020.104516

2. George S., Pandit P., Gupta A. B. Residual aluminium in water defluoridated using activated alumina adsorption – modeling and simulation studies // Water Res. 2010. Vol. 44, nо. 10. P. 3055–3064. https://doi:10.1016/j.watres.2010.02.028

3. Tripathy S. S., Raichur A. M. Abatement of fluoride from water using manganese dioxide-coated activated alumina // J. Hazard. Mater. 2008. Vol. 153, nо. 3. P. 1043–1051. https://doi:10.1016/j.jhazmat.2007.09.100

4. Chauhan V. S., Dwivedi P. K., Iyengar L. Investigations on activated alumina based domestic defluoridation units // J. Hazard. Mater. 2007. Vol. 139, nо. 1. P. 103–107. https://doi:10.1016/j.jhazmat.2006.06.014

5. Breakthrough analysis for water defluoridation using surface-tailored zeolite in a fixed bed column / M. S. Onyango, T. Y. Leswifi, A. Ochieng, D. Kuchar, F. O. Otieno, H. Matsuda // Ind. Eng. Chem. Res. 2009. Vol. 48, nо. 2. P. 931–937. https://doi:10.1021/ie0715963

6. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9 / M. S. Onyango, Y. Kojima, O. Aoyi, E. C. Bernardo, H. Matsuda // J. Colloid Interf. Sci. 2004. Vol. 279, nо. 2. P. 341–350. https://doi:10.1016/j.jcis.2004.06.038

7. Defluoridation of drinking water using adsorption processes // P. Loganathan, S. Vigneswaran, J. Kandasamy, R. Naidu // J. Hazard. Mater. 2013. Vol. 248, nо. 1. P. 1–19. https://doi:10.1016/j.jhazmat.2012.12.043

8. Development of a nanosphere adsorbent for the removal of fluoride from water / K. Zhang, S. Wu, J. He, L. Chen, X. Cai, K. Chen, J. Liu // Journal of Colloid and Interface Science. 2016. Vol. 475. P. 17–25. https://doi:10.1016/j.jcis.2016.04.037

9. Boroznina N. P., Zaporotskova I. V., Zaporotskov P. A. Nanofilters based on carbon nanomaterials for cleaning liquids // Lecture Notes in Networks and Systems. 2021. Vol. 155. P. 297–306. https://doi:10.1007/978-3-030-59126-7_33

10. Guan C., Lv X., Han Z., Chen C., Xu Z., Liu Q. The adsorption enhancement of graphene for fluorine and chlorine from water // Applied Surface Science. 2020. Vol. 516. P. 146157. https://doi:10.1016/j.apsusc.2020.146157

11. Boron doped carbon nanotubes: Synthesis, characterization and emerging applications – A review / S. V. Sawant, A. W. Patwardhan, J. B. Joshi, K. Dasgupta // Chemical Engineering Journal. 2022. Vol. 427. P. 131616. https://doi.org/10.1016/j.cej.2021.131616

12. Comparative analysis of the effectiveness of the sensory properties of carbon nanotubes when modifying their surface with boron atoms / N. P. Boroznina, S. V. Boroznin, I. V. Zaporotskova, P. A. Zaporotskov // Lecture Notes in Networks and Systems. 2021. Vol. 155. P. 288–296. https://doi:10.1007/978-3-030-59126-7_32

13. On the practicability of sensors based on surface-carboxylated Boron—Carbon nanotubes / N. P. Boroznina, I. V. Zaporotskova, S. V. Boroznin, L. V. Kozhitov, A. V. Popkova // Russian Journal of Inorganic Chemistry. 2019. Vol. 64, nо. 1. P. 74–78. https://doi:10.1134/S0036023619010029

14. Dyachkov P. N., Kutlubaev D. Z., Makaev D. V. Electronic structure of carbon nanotubes with point impurity //Journal of inorganic chemistry. 2011. Vol. 5, nо. 68. P. 1371–1375. https://doi.org/10.1134/S0036023611080146

15. D’yachkov P. N., Kutlubaev D. Z., Makaev D. V. Linear augmented cylindrical wave Green’s function method for electronic structure of nanotubes with substitutional impurities // Physical Review B. 2010. Vol. 82. P. 035426. https://doi.org/10.1103/PHYSREVB.82.035426

16. Investigation the role of single vacancy defected on the performance of born carbide nanotube as an aspirin drug sensor / R. Yang, L. Zhang, Z. Ma, F. Zhou, L. Wu // Computational and Theoretical Chemistry. 2021. Vol. 1196. P. 113108. https://doi:10.1016/j.comptc. 2020.113108

17. Investigation of pristine and B/N/Pt/Au/Pd doped single-walled carbon nanotube as phosgene gas sensor: A first-principles analysis / S. S. Katta, S. Yadav, A. Pratap Singh, B. SanthiBhushan, A. Srivastava // Applied Surface Science. 2022. Vol. 588. P. 152989. https://doi:10.1016/j.apsusc.2022.152989

18. Zaporotskova I. V. Uglerodnye i neuglerodnye nanomaterialy i kompozitnye struktury na ikh osnove: stroenie i elektronnye svoistva [Carbon and non-carbon nanomaterials and composite structures based on them: structure and electronic properties]. Volgograd, Volgograd St. Univ. Publ., 2009. 490 p.

19. Boroznin S. V., Zaporotskova I. V., Polikarpova N. P. Investigation of the sorption properties of carbon nanotubes with different boron impurity contents. Nanosystems: physics, chemistry, mathematics, 2016, vol. 7, no. 1, рр. 93–98. https://doi:10.17586/2220-8054-20167-1-93-98

20. Boroznin S. V. Issledovanie primesnykh atomov bora v metallizatsii uglerodnykh nanotrubok [Investigation of impurity boron atoms in metallization of carbon nanotubes]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologie, 2022, vol. 12, no. 1, pp. 159–173.


Review

For citations:


Boroznin S.V. On the Possibility of Using Carbon Nanotubes with Impurity Boron Atoms as Filters for Environmental Needs. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(2):130-145. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-2-130-145

Views: 168


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)