Simulation of Charge Formation Dynamics in EHD Systems with Different Electrodes
https://doi.org/10.21869/2223-1528-2022-12-2-111-129
Abstract
Purpose. Carry out numerical simulation of electrohydrodynamic heat exchange processes for dielectric liquids in various electrode systems. Obtain a mathematical model for numerical calculations of electrohydrodynamic flows and heat transfer properties of electrohydrodynamic systems using the finite element method; develop a program in the C++ programming language that implements the resulting model; carry out numerical simulation of electrohydrodynamic flows for dielectric liquids in various electrode systems.
Methods. Numerical modeling of EHD processes was carried out using the finite element method using the FreeFem++ library for the C++ programming language, which implements the main algorithms of this numerical method for solving partial differential equations. The three-ion model was chosen as a theoretical model describing EHD processes. As a model of computational fluid dynamics, the k-ε turbulence model was used.
Results. A program has been obtained that implements the three-ion model of EHD processes in numerical calculations of electrohydrodynamic flows by the finite element method for the two-dimensional case, numerical simulation of electrohydrodynamic flows has been carried out, as well as the calculation of the density of the injection and impurity charge, for dielectric liquids in systems of electrodes of the type " two parallel wires", "needle over plane" and "plate capacitor".
Conclusion. The obtained software implementation of the application of the three-ion model for numerical calculations of EHD processes makes it possible to simulate EHD flows in various electrode systems, which can be useful for a theoretical analysis of the prospects for using one or another electrode geometry for practical purposes.
Keywords
About the Authors
A. A. PribylovRussian Federation
Alexander A. Pribylov, Student
50 Let Oktyabrya str. 94, Kursk 305040
A. P. Kuzmenko
Russian Federation
Alexander P. Kuzmenko, Dr. of Sci. (Physics and Mathematics), Professor, Chief Researcher of the Regional Center for Nanotechnology
50 Let Oktyabrya str. 94, Kursk 305040
A. E. Kuzko
Russian Federation
Andrey E. Kuzko, Cand. of Sci. (Physics and Mathematics), Associate Professor of the Department of Nanotechnology, General and Applied Physics
50 Let Oktyabrya str. 94, Kursk 305040
Researcher ID: 7801324495
A. V. Kuzko
Russian Federation
Anna V. Kuzko, Cand. of Sci. (Physics and Mathematics), Associate Professor of the Department of Nanotechnology, General and Applied Physics
50 Let Oktyabrya str. 94, Kursk 305040
V. M. Paukov
Russian Federation
Vladimir M. Paukov, Cand. of Sci. (Physics and Mathematics), Associate Professor of the Department of Nanotechnology, General and Applied Physics
50 Let Oktyabrya str. 94, Kursk 305040
M. O. Zubareva
Russian Federation
Maria O. Zubareva, Student of the Department of Nanotechnology, General and Applied Physics
50 Let Oktyabrya str. 94, Kursk 305040
K. K. Novikov
Russian Federation
Kirill K. Novikov, Student of the Department of Nanotechnology, General and Applied Physics
50 Let Oktyabrya str. 94, Kursk 305040
References
1. Kuz’menko A. P., Kuz’ko A. E., Timakov D. I. Vliyanie na zaryadoobrazovanie elektricheskikh polei na poverkhnostyakh nanostrukturirovannykh [Effect of Electric Fields on the Surface of Nanostructured Electrodes on Charge Formation]. Zhurnal tekhnicheskoi fiziki = Technical Physics, 2013, vol. 58, no. 2, pp. 239–244.
2. Barsuk E. S., Zhilenkova D. E., Kuzko A. E. [Electrode systems of grid EHD pumps and prospects for their development]. Sovremennye instrumental'nye sistemy, informatsionnye tekhnologii i innovatsii. Sbornik nauchnykh trudov XVI Mezhdunarodnoi nauchno-prakticheskoi konferentsii [Modern instrumental systems, information technologies and innovations. Сollection of scientific papers of the XVI International Scientific and Practical Conference]. Kursk, Universitetskaya kniga Publ., 2021, pp. 55–61.
3. Zhakin A. I., Kuzko A. E., Belov P. A., Lazarev A. N. Study of transient processes and the influence of the surface structure of electrodes on heat transfer in a wire EHD heat exchanger. Electronic processing of materials. 2011, no. 47 (3), pp. 54–60.
4. Abakumov P. V. Zhakin A. I., Kuzmenko A. P., Kuzko A. E., Timakov D. I. Strukturirovanie na mezhfaznykh granitsakh v protsesse elektrokonvektsii [Structuring at interphase boundaries in the process of electroconvection]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2011, no. 1, pp. 38–44.
5. Zhakin A. I. Ionnaya elektroprovodnost' i kompleksoobrazovanie v zhidkikh di- elektrikakh [Ionic electrical conductivity and complex formation in liquid dielectrics]. Uspekhi fizicheskikh nauk = Uspekhi fizicheskikh nauk, 2003, no. 1, pp. 51–68.
6. Zhakin A. I. Elektrogidrodinamika [Electrohydrodynamics]. Uspekhi fizicheskikh nauk. Obzory aktual'nykh problem = Uspekhi Fizicheskikh Nauk. Surveys of topical problems, 2012, no. 5, pp. 495–520.
7. Zhakin A. I. Prielektrodnye i perekhodnye protsessy v zhidkikh dielektrikakh [Nearelectrode and transient processes in liquid dielectrics]. Uspekhi fizicheskikh nauk = Uspekhi fizicheskikh nauk, 2006, no. 3, pp. 289–310.
8. Stishkov Yu. K., Chirkov V. A. Osobennosti struktury prielektrodnykh dissotsiatsionno-rekombinatsionnykh zaryazhennykh sloev pri raznykh urovnyakh nizkovol'tnoi provodimosti slaboprovodyashchei zhidkosti [Features of the structure of near-electrode dissociation-recombination charged layers at different levels of low-voltage conductivity of a weakly conductive liquid]. Zhurnal tekhnicheskoi fiziki = Journal of technical physics, 2013, no. 83(12), pp. 119–127.
9. Pohl H. Ackland Some effects of nonuniform fields on dielectrics. Journal of Applied Physics. 1958, vol. 29, pp. 1182–1188.
10. Smits A. J. Lectures in fluid mechanics: Viscous flows and turbulence. Princeton, Princeton University Publ., 2009. 432 p.
11. Wilcox D. C. Turbulence modeling for computational fluid dynamics. Third edition. DCW Industries, inc., 2006. 536 p.
12. Jones W. P., Launder B. E. The prediction of laminarization with a two-equation model of turbulence. International journal of heat and mass transfer, 1972, vol. 15(2), pp. 301–314.
13. Kuzmin D., Mierka O. On the implementation of the k−ε turbulence model in incompressible flow solvers based on a finite element discretization. Dortmund, Germany, University of Dortmund Publ., 2006, pp. 1–8.
14. Hecht F. New development in FreeFem++. Journal of numerical mathematics, 2012, vol. 20(3-4), pp. 251–266.
15. Kuzko A. E. Issledovanie elektrofizicheskikh protsessov v elektrogidrodinamicheskikh ustroistvakh. Diss. cand. fiz.-mat. nauk [Research of electrophysical processes in electrohydrodynamic devices. Cand. physics and mathem. sci. diss.]. Kursk, 2002. 167 p.
16. Zhakin A. I., Kuzko A. E. Elektrokonvektivnyi teploobmen cherez pogranichnye sloi [Electroconvective heat transfer through boundary layers]. Teplofizika vysokikh temperatur = Thermal physics of high temperature tour, 2001, no. 5, vol. 39, pp. 79–89.
17. Zhakin A. I. Elektrogidrodinamika zaryazhennykh chastits [Electrohydrodynamics of charged surfaces]. Uspekhi fizicheskikh nauk = Uspekhi fizicheskikh nauk, 2013, no. 2, vol. 183, pp. 153–177.
18. Kuzko A. E., Kuzmenko A. P., Lazarev A. N. Ispol'zovanie ASM v raschete inzhektsii zaryadov pri elektrokonvektsii [The use of AFM in the calculation of charge injection during electroconvection]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Fizika i khimiya = Proceedings of the Southwest State University. Series: Physics and Chemistry, 2013, no. 2, pp. 32–37.
19. Stishkov Yu. K., Chirkov V. A. Komp'yuternoe modelirovanie EGD-techenii v sisteme elektrodov igla-ploskost' [Computer modeling of EHD flows in the needle-plane electrode system]. Zhurnal tekhnicheskoi fiziki = Journal of technical physics, 2008, no. 78, vol. 11, pp. 17–23.
20. Stishkov Yu. K. Elektrofizicheskie protsessy v zhidkostyakh pri vozdeistvii sil'nykh elektricheskikh polei [Electrophysical processes in liquids under the influence of strong electric fields]. Moscow, Yustitsinform Publ., 2019. 262 p.
Review
For citations:
Pribylov A.A., Kuzmenko A.P., Kuzko A.E., Kuzko A.V., Paukov V.M., Zubareva M.O., Novikov K.K. Simulation of Charge Formation Dynamics in EHD Systems with Different Electrodes. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(2):111-129. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-2-111-129