Optimization of Conditions for the Determination of Folic Acid by Spectrophotometric, Fluorimetric and Chromatographic Methods of Analysis
https://doi.org/10.21869/2223-1528-2022-12-3-184-200
Abstract
Purpose. The aim of the work was to assess the possibility to use a folic acid drug as a standard sample and to choose the conditions of determination of folic acid by spectrophotometric, fluorimetric and chromatographic methods of analysis with the best metrological parameters.
Methods. For spectrophotometric measurements we used a two-beam scanning spectrophotometer UV-1800 Shimadzu (Japan), for evaluation of fluorescence - liquid analyzer "Fluorat-02-Panorama" (Russia), For chromatographic studies - liquid chromatograph LC-20AD from Shimadzu (Japan), equipped with a spectrophotometric detector SPDM20A and a column Nucleosil C18 (octadecyl), size 25 x 4,6 mm, firm Supelcosil. The method of spectrophotometric determination of folic acid is based on the reaction of obtaining an azo dye with a steady violet color, the intensity of which is proportional to the content of the analyte. The fluorimetric determination of folic acid is based on the oxidation of the analyte with potassium permanganate, which produces reaction products with fluorescence. Chromatographic analysis is based on a directly proportional relationship between peak area and folic acid concentration.
Results. In this work we studied the influence of the nature and pH of four buffer solutions on the degree of extraction of folic acid from dosage forms. The most complete extraction of the analyte (R = 96.83%) was detected in case of using phosphate buffer solution with pH 6.8. A fluorimetric method of determination of folic acid with higher sensitivity as compared to the state methods was proposed, the detection limit was 0.02 µg/ml. Due to a break in the concentration range of the analyte, the sensitivity of the colorimetric method was increased, the detection limit was reduced to 0.13 µg/ml. A chromatographic method of folic acid determination with a linear range of 0.1 - 10 µg/ml, and a detection limit of 0.1 µg/ml were developed.
Conclusion. The proposed methods for determining folic acid have been validated in the analysis of samples of cow's milk and white beans. The use of Fisher's test and a modified Student's test showed the absence of systematic error.
About the Authors
E. V. MelikhovaRussian Federation
Elena V. Melikhova, Cand. of Sci. (Chemistry), Associate Professor, Associate Professor of the Department of Chemistry
Moskovskaya Str., Lipetsk 398055
G. A. Egorov
Russian Federation
Gennady A. Egorov, Engineer
Moskovskaya Str., Lipetsk 398055
E. I. Lazutkina
Russian Federation
Elizaveta I. Lazutkina, Student
Moskovskaya Str., Lipetsk 398055
A. V. Yelfimova
Russian Federation
Alexandra V. Yelfimova, Student of the Department of Chemistry
Moskovskaya Str., Lipetsk 398055
References
1. Suvorov N. V., Mironov A. F., Grin M. A. Folic acid and its derivatives for targeted photodynamic therapy of cancer. Russ. Chem. Bull., 2017, vol. 66, рр. 1982–2008. https://doi.org/10.1007/s11172-017-1973-7
2. Alekseeva A. S., Gavrilin M. V., Shemeryankina T. B., Smirnova M. S., Fedoro- va E. P., Kargina T. M., Novikov O. O., Kovaleva S. A., Boyko N. N. Analiz folievoi kisloty v polivitaminnykh preparatakh metodom obrashchenno-fazovoi VEZhKh [Determination of Folic Acid in Multivitamin Preparations by Reversed Phase HPLC]. Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya = The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products, 2021, vol. 11(3), рр. 185–192. https://doi.org/10.30895/1991-2919-2021-11-2-185-192
3. Krolevets A. A., Glotova S. G., Mamaeva E. M., Golubkova K. V. Nanostrukturirovannaya folievaya kislota i ee primenenie dlya polucheniya funktsional'nykh produktov pitaniya dlya zhenshchin 20–35 let [Nanostructured folic acid and its use for the production of functional food products for women 20-35 years old]. Tovaroved prodovol'stvennykh tovarov = Commodity expert of food products, 2020, no. 10, рр. 60–65. https://doi.org/10.33920/igt01-2010-08
4. Kushnir A. A., Sukhanov P. T., Sizo K. O. Opredelenie nootropov v lekarstvennykh sredstvakh, biologicheskikh ob"ektakh i pishchevykh dobavkakh (obzor) [Determination of nootropics in medicines, biological objects and food additives (review)]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Khimiya. Biologiya. Farmatsiya = Bulletin of the Voronezh State University. Series: Chemistry. Biology. Pharmacy, 2021, no. 1, рр. 5–19.
5. Nagaraja P., Vasantha R., Yathirajan H. Spectrophotometric determination of folic acid in pharmaceutical preparations by coupling reactions with iminodibenzyl or 3-aminophenol or sodium molybdate-pyrocatechol. Anal Biochem. A, 2002, vol. 307(2), рр. 316–321. https://doi.org/10.1016/S0003-2697(02)00038-6
6. Jasim N. New approach for the on-line spectrophotometric determination of folic acid in pure and pharmaceutical preparation via oxidation by cerium (IV) sulphate using ayah 3Sx3-3D-Solar Cell CFI spectrophotometer analyzer. Iraqi Journal of Science А, 2014, vol. 55(3), рр. 1153–1163.
7. Ryazanova A. P. Fluorimetricheskoe opredelenie folievoi kisloty v lekarstvennykh preparatakh [Fluorimetric determination of folic acid in medicinal preparations]. Byulleten' meditsinskikh internet‐konferentsii = Bulletin of medical Internet conferences, 2019, vol. 9, no. 2, рр. 81.
8. Taube A. A., Sakanyan E. I. Fluorimetricheskaya metodika otsenki kolichestvennogo sodrezhaniya kisloty folievoi v sostave preparata "Komplivit" [Fluorimetric methodology for assessing the quantitative content of folic acid in the composition of the drug "Complivit"]. Razrabotka, issledovanie i marketing novoi farmatsevticheskoi produktsii. Sbornik nauchnykh trudov [Development, research and marketing of new pharmaceutical products. Collection of scientific papers]. Pyatigorsk, Pyatigorsk St. Acad. Publ., 2008, is. 63, pp. 342–343.
9. Stromtsova S. A., Kartsova A. A. Metod VEZhKh pri otsenke soderzhaniya vodo- i zhirorastvorimykh vitaminov v pishchevykh produktakh HPLC method for assessing the content of water- and fat-soluble vitamins in food products]. Tezisy VIII Vserossiiskoi konferentsii s mezhdunarodnym uchastiem molodykh uchenykh po khimiii "Mendeleev-2014" [Abstracts of the VIII All-Russian Conference with international participation of young scientists in chemistry "Mendeleev-2014"]. St. Petersburg, MBA Publ., 2014, рр. 208–209.
10. Bendryshev A. A., Pashkova E. B., Pirogov A. V., Shpigun O. A. Opredelenie vodorastvorimykh vitaminov v vitaminnykh premiksakh, biologicheskiaktivnykh dobavkakh i farmatsevticheskikh preparatakh metodov VEZhKh s gradientnym elyuirovaniem [Determination of water-soluble vitamins in vitamin premixes, bioacitve dietary supplements, and pharmaceutical preparations using high-efficiency liquid chromatography with gradient elution]. Vestnik Moskovskogo universiteta. Seriya 2: Khimiya = Bulletin of the Moscow University. Series 2: Chemistry, 2010, vol. 65(4), рр. 260–268.
11. Chaudhary A., Wang J., Prabhu S. Development and validation of a high performance liquid chromatography method for the simultaneous determination of aspirin and folic acid from nano-particulate systems. Biomed Chromatogr. А. 2010, vol. 24(9), рр. 919–925. https://doi.org/10.1002/bmc.1386
12. Bendryshev A. A., Pirogov A. V., Kolesov V. A., Pashkova E. B., Pirogov A. V., Shpigun O. A. Opredelenie vodorastvorimykh vitaminov v pishchevykh produktakh metodom VEZhKh s massselektivnym detektiorvaniem [Determination of water-soluble vitamins in food products by HPLC with mass-selective detection]. Zavodskaya laboratoriya. Diagnostika materialov = Factory Laboratory. Diagnostics of materials, 2010, vol. 76(8), рр. 15–20.
13. Mohammad A., Zehra A. Anionic-nonionic surfactants coupled micellar thin-layer chromatography: synergistic effect on simultaneous separation of hydrophilic vitamins. J. Chromatogr Scince, 2010, vol. 48(2), рр. 145–149. https://doi.org/10.1093/chromsci/48.2.145
14. Sreeram V. A., Basaveswara Rao M. V. Validated and stability indicating ultra high pressure liquid chromatographic method for folic acid in pharmaceutical preparation. International Journal of Chemical Studies A, 2013, vol. 1, рр. 17–27.
15. Pourjabbar Z., Pasandideh Y., Khorrami A. R. Solid-phase extraction and high performance liquid chromatographic determination of folic acid in fortified foodstuffs: a recommended process utilizing a new strong anion exchange sorbent. Journal of Analytical Chemistry, 2022, vol. 77, рр. 1027–1035. https://doi.org/10.1134/S1061934822080196
16. Opredelenie folievoi kisloty metodom UVEZhKh Polar RP [Determination of folic acid by HPLC Polar RP. Available: https://www.welch-us.com/determination-of-folic-acidby-uhplc-polar-rp/ (accessed 20.05.2022)
17. Phillips K., Ruggio D., Holden J. Folic acid content of ready-to-eat cereals determined by liquid chromatography-mass spectrometry: comparison to product label and to values determined by microbiological assay. Chemistry Cereal Chemistry, 2010, vol. 87(1), рр. 42–49. https://doi.org/10.1094/CCHEM-87-1-0042
18. Donon R., Elliot D., Elliot W., Jones K. Spravochnik biokhimika [Biochemist's Handbook]. Moscow, Mir Publ., 1991. P. 359.
19. Obraznik O. V., Selemenev V. F., Khokhlov V. Yu., Shatalov G. V. Ekstraktsionnoe izvlechenie folievoi kisloty vodorastvorimymi polimerami [Extractive extraction of folic acid by water-soluble polymers]. Izvestiya vysshikh uchebnykh zavedenii. Seriya: Khimiya i khimicheskaya tekhnologiya = Izvestiya vysshikh uchebnykh zavedeniy. Series "Chemistry and Chemical Technology", 2009, vol. 52(9), рр. 36–38.
20. Inikhov G. S., Brio N. P. Metody analiza moloka i molochnykh produktov [Methods of analysis of milk and dairy products]. Moscow, Pishchevaya promyshlennost' Publ., 1971.
Review
For citations:
Melikhova E.V., Egorov G.A., Lazutkina E.I., Yelfimova A.V. Optimization of Conditions for the Determination of Folic Acid by Spectrophotometric, Fluorimetric and Chromatographic Methods of Analysis. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(3):184-200. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-3-184-200