Laser- and Magnetron-Modified Injecting Surfaces of Electrodes for EHD Transducers
https://doi.org/10.21869/2223-1528-2022-12-3-147-168
Abstract
The purpose. The experimental detection of the effect of laser scribing and magnetron sputtering on the sign of charge formation of wire electrohydrodynamic electrode pairs immersed in a PMS-50 (polymethylsiloxane liquid coolant). Objectives. Determination of laser irradiation modes leading to the most developed microstructures on the surface of copper wire electrodes. Investigation of the presence and distribution density of self-organized structures into groups of nanostructures under irradiation. Obtaining anisotropy of current-voltage characteristics for different variants of cathode-anode pairs.
Methodology. The surface of wire copper electrodes was modified by laser scribing on the FMark-20RL marking complex with a power density in a laser beam pulse of about 4,8∙109 W / cm2 (with a pulse frequency of 100 kHz, a wavelength of 1060 nm). The surface structures of electrodes after treatment with a laser beam with a diameter of ~80 μm with a propagation step of 50-80 μm and obtained additionally by magnetron sputtering on a MVU TM Magna T setup were studied by scanning electron microscopy on a JEOL 6610lv SEM. The peculiarities of charge formation from the obtained modified electrodes were investigated by the method of current-voltage characteristics (I-V) using a Keithley 6487 picoammeter and a high voltage source Mantigora NT-6000R.
Results. For cathodes made of copper wire electrodes scribbled by laser radiation and coated with magnetron sputtering, the current-voltage characteristics reveal a nonlinear growth, which is described indirectly in the high-voltage part by the field emission mechanism of electrical conductivity. Nonlinear growth starts from the initial site.
Conclusion. Electric fields localized at the tops of structures additionally arising during magnetron sputtering on micro- and nanostructures, the surface of electrodes ablated by laser radiation, leads to a predominant unipolar injection of electrons from the cathode, similar to field emission, which can be used in the development of high-performance electroconvective systems.
Keywords
About the Authors
A. E. KuzkoRussian Federation
Andrey E. Kuzko, Cand. of Sci. (Physics and Mathematics), Associate Professor of the Department of Nanotechnology, General and Applied Physics
50 Let Oktyabrya Str. 94, Kursk 305040
A. I. Zhakin
Russian Federation
Anatoly I. Zhakin, Dr. of Sci. (Physics and Mathematics), Professor of the Department of Nanotechnology, Microelectronics, General and Applied Physics
50 Let Oktyabrya Str. 94, Kursk 305040
A. P. Kuzmenko
Russian Federation
Alexander P. Kuzmenko, Dr. of Sci. (Physics and Mathematics), Professor, Chief Researcher of the Regional Center for Nanotechnology
50 Let Oktyabrya Str. 94, Kursk 305040
A. V. Kuzko
Russian Federation
Anna V. Kuzko, Cand. of Sci. (Physics and Mathematics), Associate Professor of the Department of Nanotechnology, General and Applied Physics
50 Let Oktyabrya Str. 94, Kursk 305040
A. A. Pribylov
Russian Federation
Alexander A. Pribylov, Student of the Direction of Training in Nanotechnology and Microsystem Technology
50 Let Oktyabrya Str. 94, Kursk 305040
V. V. Yushin
Russian Federation
Vasily V. Yushin, Cand. of Sci. (Physics and Mathematics), Associate Professor, Department of Occupational Safety and Environment
50 Let Oktyabrya Str. 94, Kursk 305040
References
1. Pool Ch., Owens F. Nanotekhnologii [Nanotechnology]. Moscow, Tekhnosfera Publ., 2005. 336 p.
2. Gusev A. I. Nanomaterialy, nanostruktury, nanotekhnologii [Nanomaterials, nanostructures, nanotechnologies]. Moscow, Fizmatlit Publ., 2009. 416 p.
3. Whitesides J., Eigler D., Anders R., eds. Nanotekhnologiya v blizhaishem desyatiletii. Prognoz napravleniya issledovanii [Nanotechnology in the next decade. Research direction forecast]; ed. by M. K. Roko, R. S. Williams, P. Alivisatos. Moscow, Mir Publ., 2002. 292 p.
4. Suzdalev I. P. Nanotekhnologiya: fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov [Nanotechnology: physical chemistry of nanoclusters, nanostructures and nanomaterials]. Moscow, Libro-com Publ., 2009. 592 p.
5. Pogrebnyak A. D., Shpak A. P., Azarenkov N. A., Beresnev V. M. Struktura i svoistva tverdykh i sverkhtverdykh nanokompozitnykh pokrytii [Structure and properties of solid and superhard nanocomposite coatings]. Uspekhi fizicheskikh nauk = Achievements of physical science, 2009, vol. 179, no. 1, pp. 35–64.
6. Golovin Yu. I. Vvedenie v nanotekhniku [Introduction to nanotechnics]. Moscow, Machine Building Publ., 2007. 496 p.
7. Roldugin V. I. Samoorganizatsiya nanochastits na mezhfaznykh poverkhnostyakh [Self-organization of nanoparticles on interfacial surfaces]. Uspekhi khimii = Advances in chemistry, 2004, vol. 73, no. 2, pp. 123–156.
8. Tretyakov Yu. D. Protsessy samoorganizatsii v khimii materialov [Self-organization processes in the chemistry of materials]. Uspekhi khimii = Advances in chemistry, 2003, vol. 72, no. 8, pp. 731–763.
9. Lee J., Wang A. A., Rheem Y., Yoo B., Mulchandani A., Chen W., Myung N. V. DNA Assisted Assembly of Multisegmented Nanowires. Electroanalysis, 2007, vol. 19, is. 22, pp. 2287–2293.
10. Kuzmenko A. P., Naing T. P., Kuzko A. E., Tan M. M. Vliyanie elektricheskikh polei na protsessy samoorganizatsii v ul'tradispersnom rastvore mnogostennykh uglerodnykh nanotrubok [Influence of electric fields on self-organization processes in ultrafine solution of multi-walled carbon nanotubes]. Zhurnal tekhnicheskoi fiziki = Journal of Technical Physics, 2020, vol. 90, no. 2, pp. 268–277.
11. Kuzmenko A. P., Tan M. M., Zhakin A. I., Kuzko A. E., Grankin N. Yu., Chernykh Yu O. Magnito- i elektrodinamicheskoe strukturirovanie v magnitoreologicheskikh zhidkostyakh na osnove magnetita [Magneto- and electrodynamic structuring in magnetitebased magnetorheological liquids]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Technics and Technologies, 2020, vol. 10, no. 4, pp. 59–78.
12. Perekrestov V. I., Olemsky A. I., Kornyushchenko A. S., Kosminskaya Yu. A. Samoorganizatsiya kvazirezonansnykh sistem plazma-kondensat [Self-organization of quasi-resonant plasma-condensate systems]. Fizika tverdogo tela = Solid State Physics, 2009, vol. 51, no. 5, pp. 1003–1009.
13. Zhakin A. I. Elektrogidrodinamika zaryazhennykh poverkhnostei [Electrohydrodynamics of charged surfaces]. Uspekhi fizicheskikh nauk = Advances in Physical Sciences, 2013, vol. 183, no. 2, pp. 153–177.
14. Zhakin A. I., Kuzko A. E., Belov P. A., Lazarev A. N. Izuchenie perekhodnykh protsessov i vliyanie poverkhnostnoi struktury elektrodov na teplootdachu v provolochnom EGD teploobmennike [Study of transient processes and the influence of the surface structure of electrodes on heat transfer in a wire EHD heat exchanger]. Elektronnaya obrabotka materialov = Electronic Processing of Materials, 2011, no. 47 (3), pp. 54–60.
15. Volkov N. B., Mayer A. E., Sedoy V. S., Fenko E. L., Yalovets A. P. Mekhanizmy generatsii nanorazmernykh metallicheskikh chastits pri elektricheskom vzryve provodnikov [Mechanisms for the generation of nanosized metal particles in the electric explosion of conductors]. Zhurnal teoreticheskoi fiziki = Journal of Theoretical Physics, 2010, vol. 80, is. 4, pp. 77–80.
16. Sedoi V. S., Ivanov Y. F. Particles and crystallites under electrical explosion of wires. Nanotechnology, 2008, vol. 19, no. 14. http://iopscience.iop.org/0957-4484/19/14/145710.
17. Ter-Oganesyan A. E., Tkachenko S. I., Romanova V. M., Mingaleev A. R., Shelkovenko T. A., Pikuz S. A. Nanosekundnyi elektricheskii vzryv tonkikh provolochek [Nanosecond electric explosion of thin wires]. Fizika plazmy = Plasma Physics, 2005, vol. 31, is. 10, pp. 919–926.
18. Perekrestov V. I., Koropov A. V., Kravchenko S. N. Obrazovanie ostrovkovykh struktur pri osazhdenii slaboperesyshchennykh parov alyuminiya [Formation of island structures during the deposition of slightly supersaturated aluminum vapor]. Fizika tverdogo tela = Solid State Physics, 2002, vol. 44, is. 6, pp. 1131–1136.
19. Pikuz S. A., Tkachenko S. I., Barishpoltsev D. A., Ivanenkov G. V., Mingaleev A. R., Romanova V. M., Ter-Oganesyan A. E., Shelkovenko T. A. Interpretatsiya eksperimental'nykh dannykh po elektricheskomu vzryvu tonkikh provolochek v vozdukhe [Interpretation of experimental data on electrical explosion of thin wires in the air]. Pis'ma v Zhurnal tekhnicheskoi fiziki = Technical Physics Letters, 2007, vol. 33, no. 15, pp. 47–55.
20. Kozub V. I., Kozhevin V. M., Yavsin D. A., Gurevich S. A. Transport elektronov v monodispersnykh strukturakh metallov [Transport of electrons in monodisperse structures of metals]. Pis'ma v Zhurnal tekhnicheskoi fiziki = Thechnical Physics Letters, 2008, vol. 81, is. 5. pp. 287–291.
21. Kuzmenko A. P., Timakov D. I. Vliyanie na zaryadoobrazovanie elektricheskikh polei na poverkhnostyakh nanostrukturirovannykh elektrodov [Influence on the charge formation of electric fields on the surfaces of nanostructured electrodes]. Zhurnal teoreticheskoi fiziki = Journal of Theoretical Physics, 2013, vol. 83, is. 2, pp. 91–96.
22. Makin V. S., Vorobyov A. Ya., Chunlei Guo. Dissipatinvnye nanostruktury i universal'nost' Feigenbauma v neravnovesnoi nelineinoi dinamicheskoi sisteme metal – moshchnoe polyarizovannoe ul'trakorotkoimpul'snoe izluchenie [Dissipative nanostructures and Feigenbaum universality in a nonequilibrium nonlinear dynamic system of metal-powerful polarized ultrashort-pulse radiation]. Pis'ma v Zhurnal tekhnicheskoi fiziki = Thechnical Physics Letters, 2008, vol. 34, is. 9, pp. 55–64.
23. Golosov E. V., Emel'yanov V. I., Ionin A. A., Kolobov Yu. R., Kudryashov S. I., Ligachev A. E., Novoselov Yu. N., Seleznev L. V., Sinitsyn D. V. Femtosekundnaya zapis' subvolnovykh odnomernykh kvaziperiodicheskikh nanostruktur na poverkhnosti titana [Femtosecond recording of subwavelength one-dimensional quasi-periodic nanostructures on the surface of titanium]. Pis'ma v Zhurnal eksperimental'noy i teoreticheskoi fizikii = JETP Letters, 2009, vol. 90, is. 2, pp. 116–120.
24. Kuzko A. E. Osobennosti izmeneniya mikrorel'efa poverkhnostei elektrodov pri elektrokonvektsii v PMS-50 [Features of changes in the microrelief of electrode surfaces during electroconvection in PMS-50]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Fizika i khimiya = Proceedings of the Southwest State University. Series: Physics and Chemistry, 2014, no. 1, pp. 24–30.
25. Kuzko A. E., Lazarev A. N. Ispol'zovanie ASM v raschete inzhektsii zaryadov pri elektrokonvektsii [The use of AFM in the calculation of charge injection during electroconvection]. Izvestiya Yugo-Zapadnogo gosudar-stvennogo universiteta. Seriya: Fizika i khimiya = Proceedings of the Southwest State University. Series: Physics and Chemistry, 2013, no. 2, pp. 32–37.
26. Kuzmenko A. P., Nau Dint, Kuzko A. E., Myo Min Tan, Tant Sin Win, Kolpakov A. I. Nanorazmernaya kharakterizatsiya metallicheskikh magnetronnykh nanoplenochnykh mul'tisloev iz Cr, Cu, Al, Ni na sitalle [Nanoscale characterization of metallic magnetron nanofilm multilayers of Cr, Cu, Al, Ni on glass-ceramic]. Izvestiya vuzov. Materialy elektronnoi tekhniki = News of Universities. Materials of Electronic Equipmen, 2016, vol. 19, no. 3, pp. 194–202.
27. Stishkov Yu. K., Chirkov V. A. Formirovanie elektrogidrodinamicheskikh techenii v sil'noneodnorodnykh elektricheskikh polyakh pri dvukh mekhanizmakh zaryadoobrazovaniya [Formation of electrohydrodynamic flows in highly inhomogeneous electric fields with two mechanisms of charge formation]. Zhurnal teoreticheskoi fiziki = Journal of Theoretical Physics, 2012, vol. 82, is. 1, pp. 3–13.
28. Oura K., Lifshits V. G., Saranin A. A., Zotov A. V., Katayama M. Vvedenie v fiziku poverkhnosti [Introduction to surface physics]. Moscow, Nauka Publ., 2006. 490 p.
Review
For citations:
Kuzko A.E., Zhakin A.I., Kuzmenko A.P., Kuzko A.V., Pribylov A.A., Yushin V.V. Laser- and Magnetron-Modified Injecting Surfaces of Electrodes for EHD Transducers. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(3):147-168. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-3-147-168