Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Dynamics of Magnetic Fluids and Bidisperse Magnetic Systems under Oscillatory Shifts

https://doi.org/10.21869/2223-1528-2022-12-3-130-146

Abstract

Purpose. To study the dynamics of magnetic fluid and bidisperse magnetic systems under oscillatory shifts.

Metods. The experiment was carried out on installations created on the basis of well-known methods and equipment for magnetic measurements and were made independently. An original method for measuring the viscoelastic parameters of magnetic fluid systems has been developed. In this work, a magnetic fluid was studied, where magnetite Fe3O4 was used as a base, oleic acid was used as a stabilizer, and kerosene was used as a carrier liquid. To obtain a bidisperse system, magnetite particles (particle size 300 nm) 1%, 5%, and 10% by weight of the solid phase were added to the MF-1 sample, and MF-2 - MF-4 liquids were obtained, respectively. Liquids were prepared by mechanical and ultrasonic mixing of magnetite particles with a ferrofluid. Another important characteristic of these systems is the dependence of viscosity on temperature. To obtain it, the installation was significantly modernized. A sealed liquid circuit was made around the measuring cell, connected by a system of silicone flexible tubes to a thermostat. Results. Samples with different physical parameters are considered, and the magnetoviscous effect is studied. The microstructure of the sample and the presence of large magnetic particles affect the dynamics of magnetic fluids subjected to oscillatory shear and magnetoviscous effects.

Conclusion. The dynamics of a magnetic fluid and bidisperse magnetic systems under oscillatory shifts in a strong magnetic field has been studied. The temperature dependence of the damping coefficient of the magnetic fluid is obtained. The results can be used in the development of express tests of ferrofluid samples and in the creation of acceleration and vibration sensors. The results of this study can also be used to study the agglomeration of nanoparticles.

About the Authors

E. V. Shel’deshova
Southwest State University
Russian Federation

Elena V. Shel’deshova, Senior Lecturer  of the Department of Nanotechnology,  Microelectronics, General and Applied Physics

50 Let Oktyabrya Str. 94, Kursk 305040



P. A. Ryapolov
Southwest State University
Russian Federation

Petr A. Ryapolov, Dr. of Sci. (Physics and Mathematics), Associate Professor, Dean of the Faculty of Natural Sciences

50 Let Oktyabrya Str. 94, Kursk 305040



A. G. Reks
Belarusian National Technical University
Belarus

Alexander G. Reks, Dr. of Sci. (Physics and Mathematics), Professor, Professor of the UNESCO Chair "Energy Saving and Renewable Energy Sources"

65 Nezavisimosti Ave., Minsk 220013



A. V. Trepachev
Southwest State University
Russian Federation

Alexey V. Trepachev, Student of the Department of Nanotechnology, Microelectronics, General and Applied Physics

50 Let Oktyabrya Str. 94, Kursk 305040



References

1. Taketomi S., Chikazumi S. Magnitnye zhidkosti [Magnetic fluids]. Moscow, Mir Publ., 1993. 272 p.

2. Rosensweig, R. E. Ferrohydrodynamics. Cambridge, ets.: Cambridge University Press, 1985. 348 p.

3. Socoliuc V., Avdeev M. V., Kuncser V., Turcu R., Tombácz E., Vekas L. Ferrofluids and bio-ferrofluids: looking back and stepping forward. Nanoscale, 2022, vol. 14, no. 13, pp. 4786–4886.

4. Zubarev A., Iskakova L., Lopez-Lopez M., Kuzhir P., Bossis G. On the theory of magnetoviscous effect in magnetorheological suspensions. Journal of rheology, 2014, vol. 58. no. 6, pp. 1673–1692.

5. Polunin V. M., Tantsyura A. O., Storozhenko A. M., Ryapolov P. A. Issledovanie razmagnichivayushchego polya, indutsirovannogo zvukovoi volnoi [Study of demagnetizing field induced by a sound]. Akusticheskii zhurnal = Acoustical Physics, 2013, vol. 59, no. 6, pp. 662–666.

6. Ivanov A. S., Pshenichnikov A. F. Dynamics of magnetophoresis in dilute magnetic fluids. Magnetohydrodynamics, 2010, vol. 46, no. 2, pp. 125–136.

7. Erin K. V., Dikansky Yu. I. Primenenie effekta elektricheskogo dvoinogo lucheprelomleniya dlya issledovaniya protsessov relaksatsii zaryada v kolloidnykh rastvorakh magnetita [Application of the effect of electric birefringence to study the processes of charge relaxation in colloidal solutions of magnetite]. Pis'ma v Zhurnal tekhnicheskoi fiziki = Letters to the Journal of Technical Physics, 2009, vol. 35, no. 10, pp. P. 58–65.

8. Khokhryakova K. A., Kolesnichenko E. V. Volny na svobodnoi poverkhnosti magnitnoi zhidkosti na zhidkoi podlozhke, vozbuzhdaemye vertikal'nym peremennym magnitnym polem [Waves on the free surface of a magnetic fluid on a liquid substrate, excited by a vertical variable magnetic field]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2022, vol. 12, no. 2, pp. 96–110.

9. Koskov M. A. Konvektsiya ferrozhidkosti v zamknutom konture: analiz temperaturnogo polya [Convection of a ferrofluid in a closed circuit: analysis of the temperature field]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2022, vol. 12, no. 2, pp. 166–182.

10. Yerin C. V. Particles size distribution in diluted magnetic fluids. Journal of Magnetism and Magnetic Materials, 2017, vol. 431, pp. 27–29.

11. Erin K. V. Magnitoopticheskie issledovaniya agregatov nanochastits v kolloidnykh rastvorakh magnetita [Magneto-optical studies of nanoparticle aggregates in colloidal solutions of magnetite]. Optika i spektroskopiya = Optics and Spectroscopy, 2009, vol. 106, no. 6, pp. 945–949.

12. Pshenichnikov A. F., Ivanov A. S. Magnetophoresis of particles and aggregates in concentrated magnetic fluids. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2012, vol. 86, no. 5, pp. 051401.

13. Ivanov A. S., Pshenichnikov A. F. Vortex flows induced by droplike aggregate drift in magnetic fluids. Physics of Fluids, 2014, vol. 26, no. 1, pp. 012002.

14. Lacava L. M., Lacava B. M., Azevedo R. B., Lacava Z. G. M., Buske N., Tron- coni A. L., Morais P. C. Nanoparticle sizing: a comparative study using atomic force microscopy, transmission electron microscopy, and ferromagnetic resonance. Journal of Magnetism and Magnetic Materials, 2001, vol. 225, no. 1-2, pp. 79–83.

15. Morais P. C., Lacava B. M., Bakuzis A. F., Lacava L. M., Silva L. P., Azevedo R. B., Lacava Z. G. M., Buske N., Nunes W. C., Novak M. A. Atomic force microscopy and magnetization investigation of a water-based magnetic fluid. Journal of magnetism and magnetic materials, 2001, vol. 226, pp. 1899–1900.

16. Raşa M., Kuipers B. W. M., Philipse A. P. Atomic force microscopy and magnetic force microscopy study of model colloids. Journal of colloid and interface science, 2002, vol. 250, no. 2, pp. 303–315.

17. Butter K., Bomans P. H. H., Frederik P. M., Vroege G. J., Philipse A. P. Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nature materials, 2003, vol. 2, no. 2, pp. 88–91.

18. Butter K., Bomans P. H. H., Frederik P. M., Vroege G. J., Philipse A. P. Direct observation of dipolar chains in ferrofluids in zero field using cryogenic electron microscopy. Journal of Physics: Condensed Matter, 2003, vol. 15, no. 15, pp. S1451.

19. Odenbach S. Magnetic fluids-suspensions of magnetic dipoles and their magnetic control. Journal of physics: condensed matter, 2003, vol. 15, no. 15, pp. S1497.

20. Ambacher O., Odenbach S., Stierstadt K. Rotational viscosity in ferrofluids. Zeitschrift für Physik B Condensed Matter., 1992, vol. 86, no. 1, no. 29–32.

21. Nowak J., Borin D., Haefner S., Richter A., Odenbach S. Magnetoviscous effect in ferrofluids diluted with sheep blood. Journal of Magnetism and Magnetic Materials, 2017, vol. 442, pp. 383–390.

22. Sheldeshova E. V., Churaev A. A., Shabanova I. A., Ryapolov P. A. Dinamika magnitnykh zhidkostei, podvergayushchikhsya kolebatel'nomu sdvigu [Dynamics of magnetic fluids subjected to oscillatory shear]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2021, vol. 11, no. 4, pp. 137–148.

23. Karpova G. V., Kutuev A. N., Ryapolov P. A., Polunin V. M., Zubarev E. K., Kovarda V. V. On the dissipation processes in the oscillating system with a magneto-liquid element. Magnetohydrodynamics, 2009, vol. 45, no. 1, pp. 85–93.

24. PoluninV. M., Ryapolov P. A., Platonov V. B., Kuz’ko A. E. Svobodnye kolebaniya magnitnoi zhidkosti v sil'nom magnitnom pole [Free oscillations of magnetic fluid in strong magnetic field]. Akusticheskii zhurnal = Acoustical Physics, 2016, vol. 62, no. 3, pp. 313– 318.

25. López-López M. T., De Vicente J., Bossis G., González-Caballero F., Durán J. D. G. Preparation of stable magnetorheological fluids based on extremely bimodal iron–magnetite suspensions. Journal of materials research, 2005, vol. 20, no. 4, pp. 874–881.

26. Iglesias G. R., López-López M. T., Duran J. D. G., González-Caballero F., Delgado A. V. Dynamic characterization of extremely bidisperse magnetorheological fluids. Journal of colloid and interface science, 2012, vol. 377, no. 1, pp. 153–159.

27. Galindo-Gonzalez C., De Vicente J., Ramos-Tejada M. M., Lopez-Lopez M. T., Gonzalez-Caballero F., Duran J. D. G. Preparation and sedimentation behavior in magnetic fields of magnetite-covered clay particles. Langmuir, 2005, vol. 21, no. 10, pp. 4410–4419.

28. Rosensweig R. E. Magnetorheological particle clouds. Journal of Magnetism and Magnetic Materials, 2019, vol. 479, pp. 301–306.

29. Susan-Resiga D., Socoliuc V., Bunge A., Turcu R., Vékás L. From high colloidal stability ferrofluids to magnetorheological fluids: tuning the flow behavior by magnetite nanoclusters. Smart Materials and Structures, 2019, vol. 28, no. 11, pp. 115014.

30. Siebert E., Dupuis V., Neveu S., Odenbach S. Rheological investigations on the theoretical predicted “Poisoning” effect in bidisperse ferrofluids. Journal of Magnetism and Magnetic Materials, 2015, vol. 374, pp. 44–49.

31. López-López M. T., Kuzhir P., Lacis S., Bossis G., González-Caballero F., Durán J. D. Magnetorheology for suspensions of solid particles dispersed in ferrofluids. Journal of Physics: Condensed Matter, 2006, vol. 18, no. 38, pp. S2803.

32. McTague J. P. Magnetoviscosity of magnetic colloids. The Journal of Chemical Physics, 1969, vol. 51, no. 1, pp. 133–136.

33. Krichler M., Odenbach S. Thermal conductivity measurements on ferrofluids with special reference to measuring arrangement. Journal of Magnetism and Magnetic Materials, 2013, vol. 326, pp. 85–90.

34. Popplewell J., Al-Qenaie A., Charles S. W., Moskowitz R., Raj K. Thermal conductivity measurements on ferrofluids. Colloid and Polymer Science, 1982, vol. 260, no. 3, pp. 333–338.

35. Raj K., Moskowitz B., Casciari R. Advances in ferrofluid technology. Journal of magnetism and magnetic materials, 1995, vol. 149, no. 1-2, pp. 174–180.

36. Bottenberg W., Melillo L., Raj K. The dependence of loudspeaker design parameters on the properties of magnetic fluids. Journal of the Audio Engineering Society, 1980, vol. 28, no. 1/2, pp. 17–25.

37. Scherer C., Figueiredo A. M. Neto Ferrofluids: properties and applications. Brazilian Journal of Physics, 2005, vol. 35, pp. 718–727.

38. Polunin V. M., Ryapolov P. A., Shel’deshova E. V., Kuz’ko A. E., Aref’ev I. M. Dinamicheskaya uprugost' stolbika magnitnoi zhidkosti v sil'nom magnitnom pole [Dynamic Elasticity of a magnetic fluid column in a strong magnetic field]. Izvestiya vysshikh uchebnykh zavedenii. Fizika = Russian Physics Journal, 2017, vol. 60, no. 3, pp. 381–388.

39. Ryapolov P. A., Polunin V. M., Shel'deshova E. V. An alternative way to study magnetic fluid magnetization and viscosity. Journal of Magnetism and Magnetic Materials, 2020, vol. 496, pp. 165924.

40. Polunin V. M., Ryapolov P. A., Zhakin A. I., Sheldeshova E. V. Vyazkost' magnitnoi zhidkosti pri kolebaniyakh v sil'nom magnitnom pole [Viscosity of a Magnetic Fluid in a Strong Magnetic Field]. Akusticheskii zhurnal = Acoustical Physics, 2019, vol. 65, no. 4, pp. 379–384.


Review

For citations:


Shel’deshova E.V., Ryapolov P.A., Reks A.G., Trepachev A.V. Dynamics of Magnetic Fluids and Bidisperse Magnetic Systems under Oscillatory Shifts. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(3):130-146. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-3-130-146

Views: 136


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)