Surface Modification of Economically Alloyed Steel 9XC in Nitrogen-Carbon Medium in Order to Increase Wear Resistance
https://doi.org/10.21869/2223-1528-2022-12-3-57-71
Abstract
Purpose. The study of nitrocementation of steel 9XC at a temperature of 560 ° C in a highly active solid nitrogencarbon medium based on amorphous carbon and nitrogen–containing components – carbamide and potassium ferricyanide – was undertaken.
Methods. The microstructure of nitrocemented steel on transverse sections was studied using an XIMEA optical microscope with Axalit software, as well as using a Qanta FEG – 650 electron scanning microscope with a focused ion beam EBCD microanalysis system. A layer–by-layer X-ray diffraction analysis of samples on the XR-700S diffractometer in chrome radiation was carried out.
Results. The wear tests of carbonitrated specimens were carried out under friction conditions similar to those of punching tools. The wear resistance of nitrocarburized samples was studied on an SMTs-2 friction machine. The tests were carried out both under dry friction conditions and under boundary friction conditions. High efficiency of the proposed paste at this temperature was experimentally shown. As a result of nitrocementation, modified layers saturated with solid inclusions (ε-phases) are formed on the surface of steel. These modified layers are characterized by high hardness, low coefficient of friction and high wear resistance.
Conclusion. Based on the results of the studies, it can be concluded that the nitrocarburizing of die steel 9XC, carried out in a highly active nitrogen-carbon paste at a carbonitration temperature (560 ° C), contributes to the formation of modified layers saturated with carbonitrides (mainly hexagonal carbonitride ε) on the surface. The modified layers are characterized by a very low coefficient of friction and very high wear resistance. Nitrocarburized steel 9XC can be used for the manufacture of working parts of dies, instead of more expensive high-alloy steels (for example, X12), which can increase the economic efficiency of mechanical engineering.
About the Authors
N. A. KostinRussian Federation
Nikolay A. Kostin, Cand. of Sci. (Engineering), Associate Professor
33 Radishev Str., Kursk 305000
V. I. Kolmykov
Russian Federation
Valery I. Kolmykov, Dr. of Sci. (Engineering), Professor
50 Let Oktyabrya Str. 94, Kursk 305040
N. N. Kostin
Russian Federation
Nikolay N. Kostin, Undergraduate
50 Let Oktyabrya Str. 94, Kursk 305040
References
1. Geller Yu. A. Instrumental'nye stali [Tool steels]. Moscow, Metallurgy Publ., 1983. 525 p.
2. Artinger I. Instrumental'nye stali i ikh termicheskaya obrabotka [Tool steels and their heat treatment]. Moscow, Metallurgy Publ., 1982. 311 p.
3. Okolovich G. A. Shtampovye stali dlya kholodnogo deformirovaniya metallov [Stamped steels for cold deformation of metals]. Ed. 2th. Barnaul, AltSGU Publ., 2010. 202 p.
4. Poznyak L. A., Skrypchenko Yu. M., Tishaev S. I. Shtampovye stali [Stamped steels]. Moscow, Metallurgy Publ., 1980. 243 p.
5. Gulyaev A. P., Malinina K. A., Saverina S. M. Instrumental'nye stali [Tool steels]. Ed. 2th. Moscow, Mashinostroenie Publ., 1975. 272 p.
6. Köhnen P., Haase Ch., Bültmann J., Ziegler S., Schleifenbaum J., Bleck W. Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel. Materials and Desing, 2018, vol. 145, pp. 205–2017.
7. Metally i splavy [Metals and alloys]; ed. by Yu. P. Solntsev. St. Petersburg, ANO NPO Professional, 2003. 1066 p.
8. Ivanov A. S., Bogdanova M. V. Optimizatsiya tekhnologii tsementatsii i termicheskoi obrabotki nizkouglerodistykh martensitnykh stalei [Optimization of the technology of cementation and heat treatment of low-carbon martensitic steels]. Metallovedenie i termicheskaya obrabotka metallov = Metallovedenie and heat treatment of metals, 2016, no. 2, pp. 59–62.
9. Lakhtin Yu. M., Kozlovsky I. S. Osnovy tekhnologii khimiko-termicheskoi obrabotki [Fundamentals of chemical-thermal treatment technology]. Termicheskaya obrabotka v mashinostroenii [Heat treatment in mechanical engineering]. Moscow, Mashinostroenie Publ., 1980, pp. 275–368.
10. Kostin N. A., Kolmykov V. I., Kostin N. N., etc. Sposob nitrotsementatsii detalei iz konstruktsionnykh i instrumental'nykh stalei [Method of nitrocementation of parts from structural and tool steels]. Patent RF, no. 2592339. 2016.
11. Khatkevich V. M., Nikulin S. A., Rozhnov A. B., Rogachev S. O. Mekhanicheskie svoistva i kharakter razrusheniya ferritnykh korrozionno-stoikikh stalei posle vysokotemperaturnogo azotirovaniya [Mechanical properties and nature of disintegration of ferritic corrosion-proof steels after nitriding in high temperatures]. Metallovedenie i termicheskaya obrabotka metallov = Metal science and heat treatment of metals, 2015, no. 4, pp. 26–31.
12. Kostin N. A., Trusova E. V. Issledovanie nasyshchayushchei sposobnosti azotiruyushchei pasty pri nizkikh i vysokikh temperaturakh nitrotsementatsii shtampovoi stali [Study of the saturating ability of nitriding paste at low and high temperatures of nitrocementation of stamped steel]. Uchenye zapiski: elektronnyi zhurnal Kurskogo gosudarstvennogo universiteta = Scientific notes: electronic journal of Kursk State University, no. 1, 2013, pp. 80–86.
13. Kostin N. A. Pack cyaniding of steel 6KH4M2FS in order to increase heavily-loaded die durability. Metal Science and Heat Treatment, 2020, vol. 62, no. 5-6, pp. 331–335.
14. Kostin N. A. Osobennosti zakalki shtampovykh stalei 5KhGS i 5Kh3GS, nauglerozhennykh do zaevtektoidnykh kontsentratsii [Features of hardening of stamped steels 5XGS and 5X3GS, carbonized to hypereutectoid concentrations]. Chernye metally = Ferrous metals, 2020, no. 5, pp. 31–36.
15. Kostin N. A. Povyshenie ekspluatatsionnykh svoistv shtampovoi stali 5Kh2GF putem sozdaniya karbonitridnykh sloev khimiko-termicheskoi obrabotkoi [Improving the performance properties of 5X2GF die steel by creating carbonitride layers by chemical-thermal treatment]. Metallovedenie i termicheskaya obrabotka metallov = Metallology and heat treatment of metals, 2016, no. 8, pp. 19–22.
16. Kostin N. A., Trusova E. V. Ispol'zovanie nitrotsementovannoi stali ShKh 15 v kachestve materiala dlya shtampovykh instrumentov [The use of nitrocemented steel SH 15 as a material for stamping tools]. Voprosy materialovedeniya = Questions of materials science, 2017, no. 1, pp. 31–37.
17. Prokoshkin D. A. Khimiko-termicheskaya obrabotka metallov – karbonitratsiya [Chemical and thermal treatment of metals – carbonitration]. Moscow, Metallurgy Publ., 1984. 240 p.
18. Ivanov A. S., Bogdanova M. V. Optimizatsiya tekhnologii tsementatsii i termicheskoi obrabotki nizkouglerodistykh martensitnykh stalei [Optimization of technology for carburizing and heat treatment of low-carbon martensitic steels]. Metallovedenie i termicheskaya obrabotka metallov = Metal science and heat treatment of metals, 2014, no. 8, pp. 44–48.
19. Kostin N. A., Kolmykov V. I., Trusova E. V. Osobennosti protsessa nauglerozhivaniya instrumental'nykh stalei dlya povysheniya stoikosti shtampovogo instrumenta [Special features of the process of high-speed steels carburization in order to increase endurance of die tools]. Auditorium, 2016, no. 1, pp. 53–58.
20. Mosecker L., Pierce D. T., Schwedt A., Beighmohamadi M., Mayer J., Bleck W., Wittig J. E. Temperature effect on deformation mechanisms and mechanical properties of a high manganese C+N alloyed austenitic stainless steel. Materials Science and Engineering: A, 2015, vol. 642, pp. 71–83.
21. Morray T., Jacque F., Mansori M., Fabre A., Arralie L. Termodinamicheskie i eksperimental'nye issledovaniya nizkolegirovannykh stalei posle nitrotsementatsii v atmosferakh nizkogo davleniya [Thermodynamic and experimental study of low-alloy steels after nitrocarburizing in low pressure atmospheres]. Metallovedenie i termicheskaya obrabotka metallov = Metal science and heat treatment of metals, 2014, no. 8, pp. 34–39.
Review
For citations:
Kostin N.A., Kolmykov V.I., Kostin N.N. Surface Modification of Economically Alloyed Steel 9XC in Nitrogen-Carbon Medium in Order to Increase Wear Resistance. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(3):57-71. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-3-57-71