Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Application of the spectral selection method for analyzing spatial inhomogeneities in scattering and luminescent materials

https://doi.org/10.21869/2223-1528-2025-15-3-80-90

Abstract

   Purpose of research. Testing of the spectral selection method using narrow-band interference filters for the analysis of spatial inhomogeneities in light-scattering and luminescent media using the example of astrophysical objects of various nature.

   Methods. The studies were carried out using a specialized optical complex based on a cooled color CCD camera QHY 533c and selective interference filter Svbony SV220 (Hα and OIII lines). Two optical schemes were used: a wide-field configuration with a 200 mm f/4 telephoto lens for studying large-scale structure, and a high-resolution configuration with an Askar FRA 500 astrograph (500 mm f/5.6) for detailed morphology analysis. Specialized software with implemented algorithms for photometric calibration and mosaic composition was used for data processing.

   Results. For the luminescent medium (IC 1805), a spatial resolution of ~0.04 pc/pixel was obtained, which made it possible to identify structures tens of thousands of AU long and estimate the dynamic pressure of the stellar wind (~10-11 Pa). For the light-scattering medium (LBN 667), a resolution of ~600 AU/pixel was achieved, which ensured the identification of fibrous structures of substellar scale (< 0.1 pc). The method's capability for selective mapping of various environment components with contrast > 90 % has been demonstrated.

   Conclusion. The spectral selection method demonstrates high efficiency for diagnosing spatial inhomogeneities and can be adapted for solving materials science problems, including the analysis of luminescent coatings, defect control in transparent media, and non-destructive testing of multilayer structures. The development of specialized interference filters for specific technological applications is a promising direction.

About the Authors

P. V. Abakumov
Kursk State Medical Universit
Россия

Pavel V. Abakumov, Candidate of Sciences (Physics and Mathematics), Associate Professor

Physics, Informatics and Mathematics Department

305041; 3 K. Marx Str.; Kursk



I. V. Loktionova
Southwest State University
Россия

Inna V. Loktionova, Candidate of Sciences (Physics and Mathematics), Associate Professor

Department of Nanotechnology, Microelectronics, General and Applied Physics

305040; 50 Let Oktyabrya Str. 94; Kursk



References

1. Tret'yakov V.V., Karpushkin S.V. Non-destructive testing of the microstructure of composite materials using modern optical methods. Zavodskaya laboratoriya. Diagnostika materialov = Industrial Laboratory. Materials Diagnostics. 2021;87(3):45-53. (In Russ.) doi: 10.26896/1028-6861-2021-87-3-45-53.

2. Oskolkova K.I., Frolov D.Yu. Fluorescent methods for analyzing defects in nanostructured coatings. Vestnik Moskovskogo Universiteta. Seriya 2: Khimiya = Moscow University Chemistry Bulletin. 2020;61(4):254-261. (In Russ.) doi: 10.3103/S0027131420040067.

3. Smirnov A.N., Petrov V.G. Non-destructive testing of structural inhomogeneities in transparent ceramics using light scattering tomography. Journal of the European Ceramic Society. 2022;42(4): 1359-1367. doi: 10.1016/j.jeurceramsoc.2021.12.022.

4. Johnson K.L., Brown M.P. Imaging of phase boundaries and defect structures in functional nanomaterials. Materials Characterization. 2019;158:109-117. doi: 10.1016/j.matchar.2019.109117.

5. Ivanov A.A., Sidorov D.V. Methods for suppressing background radiation in high-resolution fluorescence microscopy. Optika i Spektroskopiya = Optics and Spectroscopy. 2021;129(5):612-619. (In Russ.) doi: 10.21883/OS.2021.05.50988.34-21.

6. Macleod H.A. Thin-Film Optical Filters. 4<sup>th</sup> ed. CRC Press. 2010. P. 792. doi: 10.1201/9781420073027.

7. Volkov P.V., Belov M.L. Modern interference filters for spectral selection tasks. Pribory i tekhnika eksperimenta = Instruments and Experimental Techniques. 2018;(5):112-118. (In Russ.) doi: 10.7868/S0032816218050174.

8. Smith J., Johnson K. High-contrast imaging techniques for luminescent materials analysis. Materials Characterization. 2020;165:110-118. doi: 10.1016/j.matchar.2020.110118.

9. Fedorov A.V., Volkov P.V. Nanotechnology approaches in modern interference filters design. Journal of Nanomaterials. 2022;15(3):112-125. doi: 10.1155/2022/4567891.

10. Lee K.-S., Gawiser E., Park C., Yang Y., Valdes F., Lang D. The one-hundred-deg<sup>2</sup> DECam imaging in narrowbands (ODIN): Survey design and science goals. The Astrophysical Journal. 2024;962(2):163-178. doi: 10.3847/1538-4357/ad165e.

11. Mostardi R.E., Shapley A.E., Nestor D.B., Steidel C.C., Reddy N.A., Trainor R.F. Narrowband Lyman-continuum imaging of galaxies at z ∼ 2.85. The Astrophysical Journal. 2013;779(1):65-74. doi: 10.1088/0004-637X/779/1/65.

12. Chen L., Wang H., Zhang Y. Optical diagnostics of plasma streams in surface treatment technologies. Surface and Coatings Technolog. 2021;405:126-134. doi: 10.1016/j.surfcoat.2020.126534.

13. Grigor'ev E.I., Sokolov A.S. Spectral-luminescent methods for studying doped oxide nanomaterials. Zhurnal prikladnoy spektroskopii = Journal of Applied Spectroscopy. 2019;86(2):245-251. (In Russ.) doi: 10.1007/s10812-019-00806-3.

14. Kuznetsov V.I., Fedorov A.A. Visualization of thermal fields in transparent media using Raman scattering spectroscopy. Quantum Electronics. 2017;47(9):831-837. doi: 10.1070/QEL16345.

15. Kuznetsova E.V., Smirnov I.P. Defect analysis in multilayer optical coatings using spectral imaging. Optical Materials Express. 2021;11(7): 2045-2058. doi: 10.1364/OME.424567.

16. Johnson M.K., Thompson R.L. Non-destructive testing of functional materials by spectral contrast enhancement. Materials Characterization. 2023;195:112532. doi: 10.1016/j.matchar.2022.112532.

17. Hester J.J., Scowen P.A., Sankrit R., Lauer T.R., Ajhar E.A., Baum W.A. Hubble space telescope WFPC2 imaging of M16: photoevaporation and emerging young stellar objects. The Astronomical Journal. 1996;111:2349-2357. doi: 10.1086/117968.

18. Muijres L.E., Vink J.S., Koter A. de, Mueller P.E. Langer predictions for mass-loss rates and terminal wind velocities of massive O-type stars. Astronomy & Astrophysics. 2011;526:106-115. doi: 10.1051/0004-6361/201015712.

19. Sung H., Bessell M.S., Chun M.-Y., Yi J., Naze Y., Lim B., et al. An optical and infrared photometric study of the young open cluster IC 1805 in the Giant H II Region W4. The Astrophysical Journal. 2017;836(1):61-75. doi: 10.3847/1538-4357/836/1/61.

20. Petrov V.G., Sokolov A.A. Laser-matter interaction: from astrophysical processes to materials processing applications. Journal of Applied Physics. 2022;131,(15):150901. doi: 10.1063/5.0083456.

21. Bagchi M., Ray S., Dey M., Dey J. Compact strange stars with a medium dependence in gluons at finite temperature. Astronomy & Astrophysics. 2006;450(2):431-435. doi: 10.1051/0004-6361:20053732.

22. Dobashi K. Atlas and catalog of dark clouds based on the 2 Micron All-Sky Survey. Publications of the Astronomical Society of Japan. 2011;63(sp1):S1-S386. doi: 10.1093/pasj/63.sp1.S1.


Review

For citations:


Abakumov P.V., Loktionova I.V. Application of the spectral selection method for analyzing spatial inhomogeneities in scattering and luminescent materials. Proceedings of the Southwest State University. Series: Engineering and Technology. 2025;15(3):80-90. (In Russ.) https://doi.org/10.21869/2223-1528-2025-15-3-80-90

Views: 98

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)