Study of microplasma jet in the needle-air-liquid-plane system. Review and experiment
https://doi.org/10.21869/2223-1528-2025-15-3-156-172
Abstract
The purpose of the research is to experimentally investigation of physical processes in the interelectrode space of the needle-air-liquid-plane system in a strong non-uniform electric field with a positive tip.
Methods. Video images of the development of a corona discharge and a microplasma structure are analyzed; I-V characteristics are measured, synchronized with the video image.
Results. An external method for obtaining a stable cold circuit flow in a needle-plate electrode system coated with a layer of weakly conductive liquid is used. Current-voltage characteristics are measured in a corona discharge environment. Visual analysis of the CR and MPS glow allows one to evaluate the ionic composition of the CR and MPS. CVCs are measured at the initial stage of MPS development. The mechanism of MPS formation is studied.
Conclusion. The study demonstrated that the IVLP system enables a new method for producing stable ion-flux-discharge with a positive tip. The IFD is shown to be consumed only with a positive tip. It was found that IR ignition in this configuration occurs at E* ≈ 3.6 kV/cm and a gradual, smooth increase in current, as the tip-air-flux-discharge system exhibits fluctuations due to unstable ion cloud states. A comparative analysis of the tip field strengths demonstrated that the latest IR ignition parameters are comparable at different polar states, but their ignition mechanisms differ. Visual analysis of the IR and IFD glow spectra allows one to evaluate the ionic composition of the IR and IFD: in the IVLP system, the contribution of OH and O2+ is noticeable, which differs from the IAF system, where N2 and N2+ emission predominate. The generation of a micro-electron-like particle in the IVZhP system occurs without preliminary ignition of a static CR, as the CR immediately develops into a micro-electron-like particle. The obtained results reveal the potential of this method for the controlled generation of CP and expand our understanding of the principle of ionization with a positive tip.
About the Authors
V. N. LesnykhРоссия
Vasily N. Lesnykh, Postgraduate Student
305040; 94 50 Let Oktyabrya Str.; Kursk
Researcher ID: NNG-1550-2025
A. I. Zhakin
Россия
Anatoly I. Zhakin, Doctor of Sciences (Physics and Mathematics), Professor
Department of Nanotechnology, Microelectronics, General and
Applied Physics
305040; 94 50 Let Oktyabrya Str.; Kursk
A. E. Kuzko
Россия
Andrey E. Kuzko, Candidate of Sciences (Physics and Mathematics), Associate Professor
Department of Nanotechnology, Microelectronics, General and Applied Physics
305040; 94 50 Let Oktyabrya Str.; Kursk
Researcher ID: 7801324495
References
1. Zhakyn A.I., Kuzko A.E. Ionization processes in the electrode system “negative needle–plane”. Experiment. High Temperature. 2024;62(5):643-654. (In Russ.) doi: 10.31857/S0040364424050016.
2. Zhakyn A.I., Kuzko A.E. Ionization processes in the electrode system “negative needle–plane”. Injection processes. High Temperature. 2024;62(6):823–831. (In Russ.) doi: 10.31857/S0040364424060032.
3. Kristof J., Blajan M.G., Shimizu K. A review on advancements in atmospheric plasma-based decontamination and drug delivery. Journal of Electrostatics. 2025. Vol. 137. doi: 10.1016/j.elstat.2025.104083.
4. Herrmann A., Margot J., Hamdan A. Influence of voltage and gap distance on the dynamics of the ionization front, plasma dots, produced by nanosecond pulsed discharges at water surface. Journal of Physics D: Applied Physics. 2022;55(27):275202. doi: 10.1088/1361-6463/ac5c24.
5. Seri P., Nici S., Cappelletti M., Scaltriti S.G., Popoli A., Cristofolini A., et al. Validation of an indirect nonthermal plasma sterilization process for disposable medical devices packed in blisters and cartons. Plasma Processes and Polymers. 2023;20(8):e2300012. doi: 10.1002/ppap.20230012.
6. Laroussi M. The resistive barrier discharge: A brief review of the device and its biomedical applications. Plasma. 2021;4(1):75-80. doi: 10.3390/plasma4010004.
7. Korzec D., Freund F., Bäuml C., Penzkofer P., Beier O., Pfuch A., et al. Hybrid dielectric barrier discharge reactor: production of reactive oxygen–nitrogen species in humid air. Plasma. 2025;8(2):27.
8. Masionis J., Ciužas D., Krugly E., Tichonovas M., Prasauskas T., Martuzevičius D. Inactivation of bioaerosol particles in a single-pass multi-stage non-thermal plasma and ionization air cleaner. Plasma. 2025:8(2):22. doi: 10.3390/plasma8020022.
9. Manoshkin Yu.V., Plotnikov A.A. Resistive-barrier discharge in atmosphere at small discharge gaps for the “needle–plane” electrode system. Trudy Moskovskogo fiziko-tekhnicheskogo instituta = Proceedings of the Moscow Institute of Physics and Technology. 2017;9(2):64-72. (In Russ.)
10. Becker S., Kornilov P. Flexible sources of cold atmospheric plasma jet. Plasma. 2024;7(4):738–751. doi: 10.3390/plasma7040041.
11. Kim E.-S., Enkhzaya G., Hwang H.-S., Han J., Kim C.-S., Shin J.-W., et al. Highly efficient transfection effect of transdermal drug delivery via skin by hybrid bipolar arc plasma stimulation and dual pulse electroporation technique. IEEE Access. 2021. P. 21679-21688. doi: 10.1109/ACCESS.2021.3056723.
12. Yahaya A.G., Kristof J., Blajan M., Mustafa F., Shimizu K. Effect of plasma discharge on epidermal layer structure in pig skin. Plasma Medicine. 2021;11(1):1-13. doi: 10.1615/PlasmaMed.2021039887.
13. Fallon M., Kennedy S., Daniels S., Humphreys H. Plasma-activated liquid as a potential decontaminant in healthcare: assessment of antibacterial activity and use with cleaning cloths. Journal of Hospital Infection. 2024;145:218–223. doi: 10.1016/j.jhin.2024.01.008.
14. Lewis B., Mendonca A., Fortes-Da-Silva P., Boylston T., Little A., Brehm-Stecher B., et al. A combination of high-voltage atmospheric cold plasma and cinnamaldehyde significantly increases inactivation of Salmonella enterica and Escherichia coli O157:H7 in raw pineapple juice. SSRN Preprint. 2024. 35 p. Available at SSRN: https://ssrn.com/abstract=4819317or. doi: 10.2139/ssrn.4819317.
15. Xia D., Zhu Y., Tang Y., Yang Y., Chen X. Superoxide anion in plasma-activated water triggers the removal of Escherichia coli biofilm. Plasma Processes and Polymers. 2023;20(5):e2200229. doi: 10.1002/ppap.202200229.
16. Kristof J., Yahaya A.G., Blajan M., Mustafa F., Shimizu K. Absorption of FD-150 into intestinal cells by microplasma. Plasma Medicine. 2023;12(4):11–28. doi: 10.1615/PlasmaMed.2023047884.
17. Grebennikov S., Malinovskaya E., Litvinova O. Cold atmospheric plasma medicine: applications, challenges, and opportunities for predictive control. Plasma. 2025;8(2):26. doi: 10.3390/plasma8020026.
18. Dudnikov V., Dudnikov A. Highly efficient small anode ion source. Plasma. 2021;4(2):214-221. doi: 10.3390/plasma4020013.
19. Kuzko A.E., Zhakyn A.I., Kuzmenko A.P., Kuzko A.V., Pribylov A.A., Yushin V.V. Laser- and magnetron-modified injecting electrode surfaces for EHD converters. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of Southwest State University. Series: Engineering and Technologies. 2022;12(3):147-168. (In Russ.) doi: 10.21869/2223-1528-2022-12-3-147-168.
20. Lesnykh V.N., Pankov A.D., Pulnikov I.V., Nevedrov V.R. Structuring of cathode electrodes for EHD pumps. In: Aktual'nye voprosy nauki, nanotekhnologii, proizvodstva (NT-04) : materialy 3-i Mezhdunarodnoi konferentsii = Current Issues in Science, Nanotechnology, and Production (NT-04) : Proceedings of the 3<sup>rd</sup> International Conference. Kursk: Universitetskaya kniga; 2023. P. 89-93. (In Russ.)
21. Juozaitienė V., Jonikė V., Mardosaitė-Busaitienė D., Griciuvienė L., Kaminskienė E., Radzijevskaja J., et al. Application of cold plasma therapy for managing subclinical mastitis in cows induced by streptococcus agalactiae, Streptococcus uberis and Escherichia coli. Veterinary and Animal Science. 2024;25:100378. doi: 10.1016/j.vas.2024.100378.
22. Godoy-Gallardo M., Eckhard U., Delgado L.M., de Roo Puente Y.J.D., Hoyos-Noguеs M., Gil F.J., et al. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioactive Materials. 2021;6:4470-4490. doi: 10.1016/j.bioactmat.2021.04.042.
23. Chervinskaya A.V., Khan M.A., Ivanova I.I., Filatova E.V. Aeroionotherapy in comprehensive medical rehabilitation programs. Vosstanovitel'nye biotekhnologii, profilakticheskaya, tsifrovaya i prediktivnaya meditsina = Restorative Biotechnologies, Preventive, Digital and Predictive Medicine. 2025;2(1):46-65. (In Russ.) doi: 10.17116/rbpdpm2025201146.
24. Wu Q., Wang Y., Du Z., Wu Z., Deng Y., Wen X. Positive corona discharge of rod-plate electrodes in high-speed airflow. High Voltage. 2024;9(4):337-350. doi: 10.1049/hve2.12416.
25. Feng Y., Cai Z., Yuan S., Ma S., Hui E. Investigating the influence of free-electron pulses and neutral excited species formation on discharge development: by PD quantum optics analysis and plasma simulation. IEEE Access. 2024;12:54510-54523. doi: 10.1109/ACCESS.2024.3394272.
26. Thomas J., Volkov A.G. Electrochemical reactions at the boundary areas between cold atmospheric pressure plasma, air, and water. Plasma. 2024;7:891-903. doi: 10.3390/plasma7040049.
Supplementary files
Review
For citations:
Lesnykh V.N., Zhakin A.I., Kuzko A.E. Study of microplasma jet in the needle-air-liquid-plane system. Review and experiment. Proceedings of the Southwest State University. Series: Engineering and Technology. 2025;15(3):156-172. (In Russ.) https://doi.org/10.21869/2223-1528-2025-15-3-156-172
JATS XML
