Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Structural and morphological transformation of pyrolysis Carbon during activation

https://doi.org/10.21869/2223-1528-2025-15-3-108-123

Abstract

   Purpose. Comprehensive study of the effect of the activation process on the morphological, structural, and elemental characteristics of technical Carbon in order to create functional carbon-containing materials with specified properties.

   Methods. Surface morphology and dispersity were investigated by scanning electron microscopy (JEOL 6610LV, secondary electron detector, 20 kV, magnification up to ×100,000). Local elemental composition was determined by energy-dispersive X-ray analysis (Oxford Instruments) with element mapping. Confocal laser microscopy (OmegaScope AIST-NT, resolution up to 300 nm) was used to analyze particle shape, size, and aggregation. Crystallochemical analysis was carried out by the method of rethgenophase analysis of X-ray diffraction (EMMA, CuKα, λ = 1.5406 Å, 2θ range = 10 – 80°). Structural defects and functional groups were identified by the method of Raman scattering spectroscopy (laser λ = 532 nm, spectral resolution 3 cm-1).

   Results. It has been established that the activation process leads to a significant transformation of the technical Carbon structure. There is a decrease in the average particle size from ~3 μm for pyrolytic Carbon to ~2 μm for the activated form, accompanied by a decrease in the polydispersity coefficient from 1.2 to 0.3, which indicates a narrowing of the particle size distribution. The activation process ensures the uniform incorporation of silicon into the Carbon matrix, reaching a concentration of up to 3.2 at. %, resulting in the formation of a homogeneous Carbon-silica nanocomposite
structure. At the same time, the Carbon component is structurally ordered, reaching the parameters characteristic of graphite with d002 = 0.3354 nm.

   Conclusion. Activation of technical carbon allows for the purposeful formation of ordered Carbon-silica nanocomposites with a developed surface and controlled defectiveness, which are promising for use in sorption processes and catalysis.

About the Authors

I. V. Loktionova
Southwest State University
Россия

Inna V. Loktionova, Candidate of Sciences (Physics and Mathematics), Associate Professor

Department of Nanotechnology, Microelectronics, General and Applied Physics

305040; 50 Let Oktyabrya Str. 94; Kursk



P. V. Abakumov
Kursk State Medical University
Россия

Pavel V. Abakumov, Candidate of Sciences (Physics and Mathematics), Associate Professor

Physics, Informatics and Mathematics Department

305041; 3 K. Marx Str.; Kursk



L. V. Tarasov
Southwest State University
Россия

Lev V. Tarasov, Student

305040; 50 Let Oktyabrya Str. 94; Kursk



A. E. Kuzko
Southwest State University
Россия

Andrey E. Kuzko, Candidate of Sciences (Physics and Mathematics), Associate Professor

Department of Nanotechnology, Microelectronics, General and Applied Physics

305040; 50 Let Oktyabrya Str. 94; Kursk

Researcher ID: 7801324495



A. I. Kolpakov
Southwest State University
Россия

Artem I. Kolpakov, Postgraduate Student

305040; 50 Let Oktyabrya Str. 94; Kursk



References

1. Ayanda O.S., Mmuoegbulam A.O., Okezie O., Durumin Iya N.I., Mohammed S.A.E., James P.H., et al. Recent progress in Carbon-based nanomaterials: critical review. Journal of Nanoparticle Research. 2024;26(5):106. doi: 10.1007/s11051-024-06006-2.

2. Kim C.H., Lee S.Y., Rhee K.Y., Park S.J. Carbon-based composites in biomedical applications : a comprehensive review of properties, applications, and future directions. Advanced Composites and Hybrid Materials. 2024;7(2):55. doi: 10.1007/s42114-024-00846-1.

3. Rosner F., Bhagde T., Slaughter D.S., Zorba V., Stokes-Draut J. Techno-economic and Carbon dioxide emission assessment of carbon black production. Journal of Cleaner Production. 2024. Vol. 436. P. 140224. doi: 10.1016/j.jclepro.2023.140224.

4. Chakraborty S. Carbon black morphology and its application in elastomer and polymer matrix. In: Banerjee B. (ed.) Rubber products: Technology and cost optimization. Berlin; Boston: Walter de Gruyter GmbH. 2024. P. 53. doi: 10.1515/9783110668537-002.

5. Uttaravalli A.N., Dinda S., Kakara V.R., Rao A.R., Daida T., Gidla B.R. Sustainable use of recycled soot (Carbon black) for the cleaner production of value-added products: a compendium. Chemical Engineering Journal Advances. 2022;11:100324. doi: 10.1016/j.ceja.2022.100324.

6. Liu W., Ji T., Hu Y., Huang S., Huang T., Liu Z., Mao X., et al. Advanced characterization of 3D printed polyolefin elastomer-Carbon black composites: cyclic mechanical behavior, thermophysical properties, and morphological analysis. Iranian Polymer Journal. 2025. P. 1-14. doi: 10.1007/s13726-025-01469-z.

7. Lu X., Lian G.J., Parker J., Ge R., Sadan M.K., Smith R.M., et al. Effect of Carbon blacks on electrical conduction and conductive binder domain of next-generation Lithium-ion batteries. Journal of Power Sources. 2024;592:233916. doi: 10.1016/j.jpowsour.2023.233916.

8. Asylbekov E., Mayer J., Nirschl H., Kwade A. Modeling of Carbon black fragmentation during high‐intensity dry mixing using the population balance equation and the discrete element method. Energy Technology. 2023;11(5):2200867. doi: 10.1002/ente.202200867.

9. Demiral İ., Samdan C., Demiral H. Enrichment of the surface functional groups of activated carbon by modification method. Surfaces and Interfaces. 2021;22:100873. doi: 10.1016/j.surfin.2020.100873.

10. DB M.S., Natatou I., Dubois V. Synthesis of activated Carbon from balanites aegyptiaca and hyphaene thebaica shells by physical activation. Carbon Trends. 2025. P. 100555. doi: 10.1016/j.cartre.2025.100555.

11. Chen P., Liu W., Sun Y., Chen Y., Pan J. Recovering Zinc and Iron from waste tire-derived pyrolysis Carbon black to prepare layered metal hydroxide composites for efficient adsorption of dye methyl orange. Recycling. 2025;10(2):76. doi: 10.3390/recycling10020076

12. Venkatesh R., Pumlianmunga, Ramesh K. Synthesis of beta Carbon nitride nanostructures by simple CVD-pyrolysis method. Diamond and Related Materials. 2021;111:108172. doi: 10.1016/j.aju.2016.04.005.

13. Zhang Z., Hu C., Qin Q.H. The improvement of void and interface characteristics in fused filament fabrication-based polymers and continuous carbon fiber-reinforced polymer composites : a comprehensive review. The International Journal of Advanced Manufacturing Technology. 2025;137:1047-1087. doi: 10.1007/s00170-025-15240-4.

14. Bauhofer W., Kovacs J.Z. A review and analysis of electrical percolation in Carbon nanotube polymer composites. Composites Science and Technology. 2009;69(10):1486-1498. doi: 10.1016/j.compscitech.2008.06.018.

15. Kim D., Kim K.H., Lim C., Lee Y.-S. Carbon-coated SiOx anode materials via PVD and pyrolyzed fuel oil to achieve Lithium-ion batteries with high cycling stability. Carbon Letters. 2022;32(1):321-328. doi: 10.1007/s42823-021-00314-6.

16. Raymundo-Piñero E., Kierzek K., Machnikowski J., Kibirek K., Machnikowski I. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon. 2006;44(12):2498-2507. doi: 10.1016/j.carbon.2006.05.022.

17. Wielowski R., Czaja P., Piekarczyk W., Zambrzycki M., Gubernat M., Fraczek-Szczypta A. Study on heat-treated pyrolytic Carbon deposited from methane on directly heated carbon fibres. Diamond and Related Materials. 2024;146:111214. doi: 10.1016/j.diamond.2024.111214.

18. Reznik B., Gerthsen D., Hüttinger K.J. Micro- and nanostructure of the Carbon matrix of infiltrated Carbon fiber felts. Carbon. 2001;39(2):215-229. doi: 10.1016/S0008-6223(00)00116-0.

19. Jiang H., Shao J.A., Hu Q., Zhu Y., Cheng W., Zhang J., et al. Carbon black production characteristics and mechanisms from pyrolysis of rubbers. Fuel Processing Technology. 2024;253:108011. doi: 10.1016/j.fuproc.2023.108011.

20. Lan Y., Xi Y., Xiong W., Liu X., Wang Z., Huang S., Lin J., et al. The effect of temperature on the roll graphite films derived from Kapton polyimide films. Applied Physics A. 2024;130(7):497. doi: 10.1007/s00339-024-07665-7.

21. Camerlingo C., Salvatore M., Carotenuto G. Monitoring Aging Effects in Graphite Bisulfates by means of raman spectroscopy. Coatings. 2024;14(1):101. doi: 10.3390/coatings14010101.

22. Senda T., Tanaka F., Ishikawa T., Okino S., Murakami, M., Yamada Y. Developing a novel evaluation technique of Raman spectra for PAN-based Carbon fibers using dependence of excitation wavelength and differential spectra. Carbon. 2025;234:119970. doi: 10.1016/j.carbon.2024.119970.


Review

For citations:


Loktionova I.V., Abakumov P.V., Tarasov L.V., Kuzko A.E., Kolpakov A.I. Structural and morphological transformation of pyrolysis Carbon during activation. Proceedings of the Southwest State University. Series: Engineering and Technology. 2025;15(3):108-123. (In Russ.) https://doi.org/10.21869/2223-1528-2025-15-3-108-123

Views: 92

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)