Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Structural and morphological features of magnetron films of bismuth telluride of n-type conductivity RF MR

https://doi.org/10.21869/2223-1528-2025-15-2-113-131

Abstract

Purpose of research. Characterization of n-type bismuth telluride nanofilms from the Bi2Te2,7Se0,3 target formed by high-frequency magnetron sputtering in Ar on a silicon substrate.
Methods. High-frequency magnetron sputtering on a silicon substrate was carried out depending on changes in the control parameters (power P = 50 – 80 W and time t = 1800 – 2700 s) of sputtering. Characterization of magnetron nanofilms was carried out by X-ray phase analysis, atomic force microscopy, scanning electron microscopy, energydispersive X-ray microanalysis, digital holographic microscopy and Raman scattering. Statistical processing of AFM images of MNFs with the construction of autocorrelation functions using the direct Fourier transform, analysis of changes in the fractal dimensions of MNFs
Results. Thicknesses were measured with precision using AFM, DHM, SEM and a specially developed EDS technique, and the growth rates of MNFs were calculated, their linear increase depending on P, and t was proven. According to the Raman and XRD data, it was found that polycrystalline MNFs are formed in the process of RF MR of Bi2Te2,7Se0,3, the crystallinity of which was achieved after annealing at 623 K. The sizes of the coherence regions, texturing, microstrains and interplanar deformation distortions of MNFs were calculated using the XRD patterns. Statistical processing of AFM images of MNFs was carried out with the determination of the fractal dimension and the construction of the ACF using the DFT. It is proved that MNFs have 3D dimensions and are formed by the mixed Stranski – Krastanov mechanism.
Conclusion. In magnetron sputtered Bi2Te3 nanofilms with n-type conductivity, deformations of both signs were found: both compressive (∆а < 0) and tensile (∆a > 0). The calculated coherence sizes are consistent with the low level of crystallinity and weakly depend on the growth of both P and t. According to measurements by the “step” method of MNF thickness, the rate of their formation was V ≈ 0,6 nm/s.

About the Authors

A. P. Kuzmenko
Southwest State University
Russian Federation

Aleksander P. Kuzmenko, Doctor of Sciences (Physics and Mathematics), Professor, Chief Researcher of the Regional Center for Nanotechnology

50 Let Oktyabrya Str. 94, Kursk 305040



A. Ig. Kolpakov
Southwest State University
Russian Federation

Artem Ig. Kolpakov, Postgraduate Student

50 Let Oktyabrya Str. 94, Kursk 305040



K. A. Matarykin
Southwest State University
Russian Federation

Konstantin A. Matarykin, Student of the Department of Nanotechnology, Mictroelectronics, General and Applied Physics

50 Let Oktyabrya Str. 94, Kursk 305040



V. V. Rodionov
Southwest State University
Russian Federation

Vladimir V. Rodionov, Candidate of Science (Physics and Mathematics), Senior Researcher of the Regional Center of Nanotechnology

50 Let Oktyabrya Str. 94, Kursk 305040



O. N. Ivanov
Belgorod State National Research University
Russian Federation

Oleg N. Ivanov, Doctor of Science (Physics and Mathematics), Leading Researcher at the Laboratory of Advanced Materials and Technologies

85 Pobeda Str., Belgorod 308015 



M. N. Yapryntsev
Belgorod State National Research University
Russian Federation

Maksim N. Yapryntsev, Candidate of Science (Physics and Mathematics), Researcher at the Center for Collective Use "Technologies and Materials"

85 Pobeda Str., Belgorod 308015 



References

1. Qin D., Pan F., Zhou J., Xu Z., Deng Y. High ZT and performance controllable thermoelectric devices based on electrically gated bismuth telluride thin films. Nano Energy. 2021;89:1-8. https://doi.org/10.1016/j.nanoen.2021.106472.

2. Cicvaric K., Meng L., Newbrook D.W., Huang R., Ye S., Zhang W., et al. Thermoelectric properties of bismuth telluride thin films electrodeposited from a nonaqueous solution. ACS Omega. 2020;5(24):14679-14688. https://doi.org/10.1021/acsomega.0c01284.

3. Cao T., Shi X.-L., Chen Z.-G. Advances in the design and assembly of flexible thermoelectric device. Progress in Materials Science. 2023;131:101003. https://doi.org/10.1016/j.pmatsci.2022.101003.

4. Mustafaeva D.G., Magkoev T.T. Thermoelectric properties of chalcogenide semiconductor compounds and conversion process efficiency. Sibirskii fizicheskii zhurnal = Siberian journal of physics. 2024;19(1):89-96. (In Russ.) https://doi.org/10.25205/2541-9447-2024-19-1-89-96.

5. Ivanov O.N., Yapryntsev M.N., Vasil’ev A.E., Zhezhu M.V., Khovaylo V.V. Metal-ceramic composite Bi2Te3-Gd: thermoelectric properties. Glass and Ceramics. 2022;79(5-6):180-184. https://doi/org/10.1007/s10717-022-00480-7.

6. Lukyanova L.N., Usov O.A., Volkov M.P., Makarenko I.V. Topological thermoelectric materials materials based on Bismuth Telluride. Nanobiotechnology Reports. 2021;16:282-293. https://doi.org/10.1134/S2635167621030125.

7. Liu Y., Du Y., Meng Q., Xu J., Shen S.Z. Effects of preparation methods on the thermoelectric performance of SWCNT/Bi2Te3 bulk composites. Materials. 2020;13(11):2636. https://doi.org/10.3390/ma13112636.

8. Hosokawa Y., Tomita K., Takashiri M. Growth of single-crystalline Bi2Te3 hexagonal nanoplates with and without single nanopores during temperature-controlled solvothermal synthesis. Scientific reports. 2019;9:10790. https://doi.org/10.1038/s41598-019-47356-5.

9. Voloshchuk I., Babich A., Pereverzeva S., Terekhov D., Sherchenkov A. Flexible thermoelectric generator fabricated by screen printing method from suspensions based on Bi2Te2.8Se0.2 and Bi0.5Sb1.5Te3. Journal of Central South University. 2023;30:2906-2918. https://doi.org/10.1007/s11771-023-5257-0.

10. Amirghasemi F., Kassegne S. Effects of RF magnetron sputtering deposition power on crystallinity and thermoelectric properties of antimony telluride and bismuth telluride thin films on flexible substrates. Journal of Electronic Materials. 2021;50:2190-2198. https://doi.org/10.1007/s11664-020-08681-y.

11. Vasil’ev A.E., Yapryntsev M.N., Ivanov O.N., Zhezhu M.V. Thermoelectric properties of Bi2 – xLuxTe2,7Se0,3 solid solutions. Semiconductors. 2019;53(5):673-677. https://doi.org/10.1134/S1063782619050282.

12. Maskaeva L.N., Pozdin A.V., Markov V.F., Mostovshchikova E.V., Voronin V.I., Mushnikov P.N., et al. Effect of substrate material on the structure, topology, composition, optical and mechanical properties of chemically deposited PbS films. Zhurnal tekhnicheskoi fiziki = Journal of Technical Physics. 2024;94(11);1922-1934. (In Russ.) https://doi.org/10.61011/jtf.2024.11.59110.39-24.

13. Kuzmenko A.P., Kolpakov A.I., Sizov A.S., Emelyanov V.M., Neruchev Yu.A. Magnetron carbon structures obtained by high-frequency magnetron sputtering in Argon and Nitrogen. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technology. 2024;14(2):71-87. (In Russ.) https://doi.org/10.21869/2223-1528-2024-14-2-71-87.

14. Essani M., Krawiec V., Brackx E., Excoffier E., Jonnard P. A simple approach for thickness measurements using electron probe microanalysis. Microscopy and Microanalysis. 2021;27:337-343. https://doi.org/10.1017/S1431927621000088.

15. Zhao Y., Luo X., Zhang J., Wu J., Bai X., Wang M., et al. Interlayer vibrational modes in fewquintuple-layer Bi2Te3 and Bi2Se3 two-dimensional crystals: Raman spectroscopy and first-principles studies. Physical Review B. 2014;90(24);245428. https://doi.org/10.1103/PhysRevB.90.245428.

16. Bose R.S.C., Ramesh K. Study of anisotropic thermal conductivity in textured thermoelectric alloys by Raman spectroscopy. RSC advances. 2021;11:24456. https://doi.org/10.1039/D1RA04886D.

17. Abdullaev N.A., Alekperov O.Z., Aligulieva Kh.V., Zverev V.N., Kerimov A.M., Mamedov N.T. Weak antilocalization in thin films of the Bi2Te2,7Se0,3 solid solution. Physics of the Solid State. 2016;58(9):1870-1875. https://doi.org/10.1134/S106378341609002X.

18. Gautam S., Verma A.K., Balapure A., Singh B., Ganesan R., Kumar M.S., et al. Structural, electronic and thermoelectric properties of Bi2Se3 thin films deposited by RF magnetron sputtering. Journal of Electronic Materials. 2022;51(5):2500-2509. https://doi.org/10.1007/s11664-022-09498-7.

19. Baganich A.A., Mikla V.I., Semak D.G., Sokolov A.P., Shebanin A.P. Raman scattering in amorphous selenium molecular structure and photoinduced crystallization. Physica Status Solidi (B) Basic Research. 1991;166. https://doi.org/10.1002/pssb.2221660133.

20. Nasikas N.K., Siafarika P., Tsigoias S., Kouderis C., Boghosian S., Kalampounias A.G. Evidence of Chlorotellurate (IV) – Hedroxochlorotellurate (IV) species equilibrium upon dissolution oftellurite glasses in aqueous hydrochloric acid: A Raman spectroscopic study. Physica B: Condensed Matter. 2023;668:415225. https://doi.org/10.1016/j.physb.2023.415225.

21. Gandhi A.C., Lai C.-Y., Wu K.-T., Ramacharyulu P.V.R.K., Koli V.B., Cheng C.-L., et al. Phase transformation and room temperature stabilization of various Bi2O3 nano-polymorphs: effect of oxygen-vacancy defects and reduced surface energy due to adsorbed carbon species. Nanoscale. 2020;12:24119-24137. https://doi.org/10.1039/D0NR06552H.

22. Zheng Z.H., Fan P., Chen T.B., Cai Z.K., Liu P.J., Liang G.X., et al. Optimization in fabricating bismuth telluride thin films by ion beam sputtering deposition. Thin Solid Films. 2012;520:5245- 5248. https:doi:10.1016/j.tsf.2012.03.086.

23. Kurokawa T., Mori R., Norimasa O., Chiba T., Eguchi R., Takashiri M. Influences of substrate types and heat treatment conditions on structural and thermoelectric properties of nanocrystalline Bi2Te3 thin films formed by DC magnetron sputtering. Vacuum. 2020;179;109535. https://doi.org/10.1016/j.vacuum.2020.109535.

24. Nuthongkum P., Sakdanuphab R., Horprathum M., Sakulkalavek A. [Bi]:[Te] control, structural and thermoelectric properties of flexible BixTey thin films prepared by RF magnetron sputtering at different sputtering pressures. Journal of Electronic Materials. 2017;46;6444-6450. https://doi.org/10.1007/s11664-017-5671-x.

25. Vorokh A.S. Scherrer formula: estimation of error in determining small nanoparticle size. Nanosystems: physics, chemistry, mathematics. 2018;9(3):364-369. https://doi.org/10.17586/22208054201893364369.

26. Orletsky I.G., Solovan M.N., Pinna F., Cicero G., Maryanchuk P.D., Maistruk E.V., et al. Structural, optical and electrical properties of Cu2SnSe3 thin films obtained by the sol-gel method. Fizika tverdogo tela = Solid State Physics. 2017;59(4):783-789. (In Russ.) https://doi.org/10.21883/FTT.2017.04.44283.354.

27. Necas D., Valtr M., Klapetek P. How levelling and scan line corrections ruin roughness measurement and how to prevent it. Scientific reports. 2020;10:15294. https://doi.org/10.1038/s41598-020-72171-8.

28. Santangelo S., Messina G., Malara A., Lisi N., Dikonimos T., Capasso A., et al. Taguchi optimized synthesis of graphene films by copper catalyzed ethanol decomposition. Diamond and Related Materials. 2014;41:73-78. https://doi.org/10.1016/j.diamond.2013.11.006.

29. Kuzmenko A.P., Gusev E.O., Rodionov V.V., Sizov A.S., Mirgorod Yu.A., Than M. Structural and morphological features of HfN magnetron nanofilms with varying thickness. Izvestiya YugoZapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(4):110-123. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-4-110-123.

30. Das A., Yadav R.P., Chawla V., Kumar S., Talu S., Pinto E.P., et al. Analyzing the surface dynamics of titanium thin films using fractal and multifractal geometry. Materials Today Communications. 2021;27;102385. https://doi.org/10.1016/j.mtcomm.2021.102385.

31. Kuzmenko A.P., Kashkin I.S., Kolpakov A.I., Zhakin A.I., Yemelyanov V.M. Structural and morphological features of magnetron nanofilms of TaN with different thicknesses. Izvestiya YugoZapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technology. 2024;14(3):147-164. (In Russ.) https://doi.org/10.21869/2223-1528-2024-14-3-147-164.


Review

For citations:


Kuzmenko A.P., Kolpakov A.I., Matarykin K.A., Rodionov V.V., Ivanov O.N., Yapryntsev M.N. Structural and morphological features of magnetron films of bismuth telluride of n-type conductivity RF MR. Proceedings of the Southwest State University. Series: Engineering and Technology. 2025;15(2):113-131. (In Russ.) https://doi.org/10.21869/2223-1528-2025-15-2-113-131

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)