Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Electrical properties of Ni-GaAs contacts obtained by electrolysis

https://doi.org/10.21869/2223-1528-2025-15-3-91-107

Abstract

   Purpose. Metal-semiconductor contacts form the basis of modern solid-state electronics.

   In the presented work the aim is to study the electrical properties of Ni-GaAs contact structures obtained by electrochemical method.

   The main task was to study the influence of impurity type and doping degree of semiconductor crystals on the current-voltage characteristics of metal-semiconductor contacts.

   Methods. The object of the study is nickel contacts to crystalline gallium arsenide obtained by the drop electrochemical method.

   For the practical production of metal-semiconductor contact structures, a Watts solution was used in the low-current density mode. The surface topography of the formed films was studied using scanning tunnel microscopy. The electrical parameters of the semiconductors were determined by Van der Pauw contact methods. The resistance of current spreading in the contact region was taken into account by means of an analytical solution of the Laplace equation with Neumann boundary conditions on the boundaries.

   Results. Experimental current-voltage characteristics of the investigated Ni-GaAs contacts are obtained and analyzed. Using a mathematical model of potential distribution in the sample area and experimental data, the resistances of nickel-gallium arsenide contacts are calculated and their volt-ampere characteristics are constructed. Energy models of metal-semiconductor contacts in the case of non-degenerate and degenerate GaAs are presented, explaining the electrical properties of the obtained structures.

   Conclusion. It is shown that the obtained Ni-p-GaAs contact structures based on non-degenerate semiconductors exhibit ohmic properties, and the volt-ampere characteristics of the Ni-n-GaAs contacts have a nonlinear region, characteristic of Schottky diodes. The obtained electrochemical contact structures of Ni-GaAs with semiconductors of different types of impurities at a carrier concentration above 1025 m-3 have only linear volt-ampere characteristics, i. e. ohmic properties are manifested.

About the Authors

V. V. Filippov
Lipetsk State Technical University; Lipetsk State Pedagogical University named after P.P. Semenov-Tyan-Shansky; Moscow State University of Technologies and Management named after K.G. Razumovsky (First Cossack University), Lipetsk Cossack Institute of Technology and Menedgement (branch)
Россия

Vladimir V. Filippov, Doctor of Science (Physics and Mathematics), Professor, Professor of the Department

Department of Physics and Biomedical Engineering; Department of Mathematics and Physics; Department of Natural and Technical Sciences

398055; 30 Moskovskaya Str.; 398020; 42 Lenina Str.; 398006; 4 Krasnoznamennaya Str.; Lipetsk



S. E. Luzyanin
Lipetsk State Pedagogical University named after P.P. Semenov-Tyan-Shansky
Россия

Sergey E. Luzyanin, Сandidate of Sciences (Physics and Mathematics), Associate Professor

Department of Mathematics and Physics

398020; 42 Lenina Str.; Lipetsk



D. A. Bakeev
Lipetsk State Pedagogical University named after P.P. Semenov-Tyan-Shansky
Россия

Dmitry A. Bakeev, Postgraduate Student

Department of Mathematics and Physics

398020; 42 Lenina Str.; Lipetsk



V. V. Klimentyev
Lipetsk State Pedagogical University named after P.P. Semenov-Tyan-Shansky
Россия

Vadim V. Klimentyev, Lecturer

Department of Mathematics and Physics

398020; 42 Lenina Str.; Lipetsk



References

1. Sze S. M., Li Y., Ng K. K. Physics of semiconductor devices. 4<sup>th</sup> ed. New Jersey: Wiley; 2021. 944 р.

2. Rudan M. Physics of semiconductor devices. New York: Springer; 2015. 649 p. doi: 10.1007/978-1-4939-1151-6.

3. Blank T.V., Gol’dberg Y.A. Mechanisms of current flow in metal-semiconductor ohmic contacts. Semiconductors. 2007;41(11):1263–1292. doi: 10.1134/S1063782607110012.

4. Prado A., Manzano A.L., Alarcon L., Grizzi O., Pastoriza H. ToF-SIMS analysis of Au/Ge/Ni ohmic contacts for n GaAs. 24<sup>th</sup> International Conference on Secondary Ion Mass Spectrometry (SIMS-24). La Rochelle; 2024. 1 p. doi: 10.13140/RG.2.2.12869.87528.

5. Haciismailoglu M., Ahmetoglu M., Haciismailoglu M., Alper M., Batmaz T. Electrical and optical properties of schottky diodes fabricated by electrodeposition of Ni films on n-GaAs. Sensors and Actuators A: Physical. 2022;347:113931. doi: 10.1016/j.sna.2022.113931.

6. Shur M. Physics of semiconductor devices. Prentice Hal; 1990. 680 p.

7. Lebedev M.V. Modification of the atomic and electronic structure of III–V semiconductor surfaces at interfaces with electrolyte solutions (Review). Semiconductors. 2020:54;699-741. doi: 10.1134/S1063782620070064.

8. Selma R., Perrin C., Zhiou S., Benoudia M., Texier M., Hoummada K. Phase formation between Ni thin films and GaAs substrate. Scripta Materialia. 2017;141:28-31. doi: 10.1016/j.scriptamat.2017.07.011.

9. Filippov V.V., Luzyanin S.E., Bakeev D.A., Smirnov M.B. Electrochemical formation and surface topography of nickel nanofilms on copper. 2022 4<sup>th</sup> International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). Lipetsk: IEEE; 2022. 770-774. doi: 10.1109/summa57301.2022.9973884.

10. Jones S., Bancroft E., Jarvis S., Hayne M. Au/Ni-Au as a contact for p-type GaAs. Semiconductor Science and Technology. 2024;39(12):12501. https://iopscience.iop.org/article/10.1088/1361-6641/ad8df7.

11. Bari G.A. Electrodeposition of Nickel. In: Schlesinger M., Paunovic M. (eds.) Modern electroplating. 5<sup>th</sup> Ed. New York: John Wiley & Sons; 2010. Р. 79-111. doi: 10.1002/9780470602638.ch3.

12. Nickel plating handbook. Toronto: Nickel Institute; 2022. 104 p.

13. Filippov V.V., Luzyanin S.E., Nefedova E.S., Tokareva D.V. Formation conditions and surface topography of Nickel nanofilms on Copper. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies. 2021;11(3):59-76. (In Russ.)

14. Chen J. Introduction to scanning tunneling microscopy. 3<sup>rd</sup> ed. Oxford: Oxford University Press; 2021. 496 p. doi: 10.1093/oso/9780198856559.001.0001.

15. Loginov B.A., Loginov P.B., Loginov V.B. Probe microscopy: applications and recommendations for development. Nanoindustriya = Nanoindustry. 2019;12(6):352-365. (In Russ.) doi: 10.22184/1993-8578.2019.12.6.352.364.

16. Filippov V.V., Mitsuk S.V., Luzyanin S.E. Measuring the resistance of metal-semiconductor contacts produced by drop electrochemical method. In: 2<sup>nd</sup> International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). Lipetsk: IEEE; 2020. Р. 871-875. doi: 10.1109/SUMMA50634.2020.9280818.

17. Filippov V.V., Luzyanin S.E., Mitsuk S.V. Methods for solving the Laplace and Poisson equations as applied to the electrodynamics of semiconductors. Lipetsk: Lipeczk. gos. ped. un-t imeni P. P. Semyonova-Tyan-Shanskogo; 2023. 86 p. (In Russ.)

18. Filippov V.V., Mitsuk S.V. Modelling magnetoresistance effect in limited anisotropic semiconductors. Chinese Physics Letters. 2017;34(7):077201. doi: 10.1088/0256-307X/34/7/077201.

19. Batavin V.V., Kontsevoy Yu.A., Fedorovich Yu.V. Measurement of parameters of semiconductor materials and structures. Moscow: Radio i svyaz; 1985. 264 p. (In Russ.)

20. Shalimova K.V. Physics of semiconductors. 4<sup>th</sup> ed. St Petersburg: Lan; 2010. 384 p. (In Russ.)

21. Bozhkov V.G. Metal–semiconductor contacts: physics and models. Tomsk: Izd. dom Tomsk. gos. un-ta; 2016. 528 p.


Supplementary files

Review

For citations:


Filippov V.V., Luzyanin S.E., Bakeev D.A., Klimentyev V.V. Electrical properties of Ni-GaAs contacts obtained by electrolysis. Proceedings of the Southwest State University. Series: Engineering and Technology. 2025;15(3):91-107. (In Russ.) https://doi.org/10.21869/2223-1528-2025-15-3-91-107

Views: 123

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)