Accumulation of damage in the femoral component of the hip arthroplasty made of Carbon-Carbon composite material
https://doi.org/10.21869/2223-1528-2025-15-2-132-148
Abstract
The purpose of the study. Assessment of the quantitative accumulation of damage in the C/C composite and the effect of damage on the bearing capacity of the endoprosthesis during continuous loading. The need to assess the impact of damage on load-bearing capacity is due to the heterogeneous structure of the C/C composite. The reason for the inhomogeneity of the C/C composite is the pyrocarbon matrix, which is a stochastic medium at the level of the crystallite dimension. Due to the specific structure of the C/C composite, damage to the grains may occur under low loads caused by accidental circumstances during human movement. Damage to the grains leads to a change in elastic properties in the area of damage to the pyrocarbon matrix and C/C composite. Such changes lead to pseudoplastic deformation of the C/C composite product.
Methods. The model for analyzing the effect of damage accumulation on the bearing capacity of the endoprosthesis, developed as part of the study, is a synthesis of two methodologically different models. The first level of the model is an algorithm that allows us to obtain solutions to the integral equation for deformations in polycrystal grains of pyrolytic carbon, determine the probabilities of damage to the matrix grains for each of the criteria, calculate the volume fractions of destroyed, partially damaged and undamaged crystallites, and determine the elastic properties of the pyrocarbon matrix at two scale levels within the framework of the generalized singular approximation and the polydisperse model. The second level is a finite element model of the femoral component of the hip arthroplasty, created in the ANSYS package. The second level model makes it possible to evaluate the effect of matrix damage at the dimensional level of crystallites on the macroscopic mechanical condition of the structure. The interconnection of the two-level model is ensured by the continuous exchange of data between the two levels.
Result of investigation. A piecewise linear diagram demonstrating the nontrivial pseudoplastic nature of the C/С composite deformation.
Conclusion. A two-level model of the femoral component of the hip joint endoprosthesis showed that the C/C composite exhibits subcritical pseudoplastic deformation, which indicates the survivability and positive mechanical response of the structure.
Keywords
About the Authors
E. S. RazumovskiiRussian Federation
Egor S. Razumovsky, Postgraduate Student of the Department of Mechanics of Composite Materials and Structures
29 Komsomolsky Ave., Perm 614990
V. E. Shavshukov
Russian Federation
Vyacheslav E. Shavshukov, Candidate of Sci ences (Physics and Mathematics), Associate Professor of the Department of Mechanics of Composite Materials and Structures
29 Komsomolsky Ave., Perm 614990
References
1. Shichman I., Roof M., Askew N., Nherera L., Rozell J. C., M. Seyler T., Schwarzkopf R. Projections and epidemiology of primary hip and knee arthroplasty in medicare patients to 2040-2060. JBJS. 2023;8(1):e22.00112. https://doi.org/10.2106/JBJS.OA.22.00112.
2. Schwartsmann C., Spinelli L. de F., Boschin L., Yépez A., Crestani M., Silva M. Correlation between patient age at total hip replacement surgery and life expectancy. Acta ortopedica brasileira. 2015;23:323-325. https://doi.org/10.1590/1413-785220152306148609.
3. Huiskes R., Weinans H., Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clinical Orthopedics and Related Research. 1992;(274):124-134. https://doi.org/10.1097/00003086-199201000-00014.
4. Samarcev V.A., Kadyncev I.V., Voluzhenkov E.G. Postoperative complications of limb metallosteosynthesis. Permskij medicinskij zhurnal = Perm Medical Journal. 2018;(3):5-8. (In Russ.)
5. Ring G., O’Mullane J., O’Riordan A., Furey A. Trace metal determination as it relates to metallosis of orthopaedic implants: Evolution and current status. Clinical Biochemistry. 2016;49(7-8):617- 635. https://doi.org/10.1016/j.clinbiochem.2016.01.001.
6. Hallab N., Merritt K., Jacobs J.J. Metal sensitivity in patients with orthopaedic implants. Journal of Bone and Joint Surgery. American Volume. 2001;83(3):428-436. https://doi.org/10.2106/00004623-200103000-00017.
7. Ul'rikh E`. V. Vertebrology in terms, numbers, figures. St. Petersburg: ELBI-SPb.; 2002. 185 p. (In Russ.)
8. Mayanov E.P., Zolkin P.I., Aberyakhimov X.M., Romanova O.G. Carbon materials in medicine. Vestnik rossijskoj akademii estestvennykh nauk = Bulletin of the Russian Academy of Natural Sciences. 2016;(2):26-30. (In Russ.).
9. Reilly D.T., Burstein A.H. The elastic and ultimate properties of compact bone tissue. Journal of Biomechanics. 1975;8(6):393-405. https://doi.org/10.1016/0021-9290(75)90075-5.
10. Turner C.H., Rho J., Takano Y., Tsui T.Y., Pharr G.M. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. Journal of Biomechanics. 1999;32(4):437-441. https://doi.org/10.1016/s0021-9290(98)00177-8.
11. Sokolkin Yu.V., Votinov A.M., Tashkinov A.A., et al. Technology and design of carboncarbon composites and structures. Moscow: Nauka; 1996. 238 p. (In Russ.).
12. Maslov L.B., Dmitryuk A.Yu., Zhmajlo M.A., Kovalenko A.N. Finite element analysis of the stress-strain state of the hip arthroplasty during walking. Rossijskij zhurnal biomekhaniki = Russian Journal of Biomechanics. 2021;25(4):414-433. (In Russ.) https://doi.org/10.15593/RZhBiomeh/2021.4.07.
13. Fedorova N.V., Larichkin A.Yu., Shevela A.A. Modeling of the loads created by a bridgelike denture supported by maxillary implants. Rossijskij zhurnal biomekhaniki = Russian Journal of Biomechanics. 2022;(2):56-66. (In Russ.) https://doi.org/10.15593/RZhBiomeh/2022.2.05.
14. Bouziane M.M., Benbarek S., Tabeti S.M.H., Bachir Bouiadjra B., Serier B., Achour T. Finite element analysis of the mechanical behaviour of the different cemented hip femoral prostheses. Key Engineering Materials. 2014;577-578:349-352. https://doi.org/10.4028/www.scientific.net/KEM.577-578.349.
15. Kumar P., Kumar J. N. Finite element analysis of femoral prosthesis using Ti-6Al-4 V alloy and TiNbZrTaFe high entropy alloy. Materials Today: Proceedings. 2020;44(1):1195-2001. https://doi.org/10.1016/j.matpr.2020.11.239.
16. Tuninetti V., Fuentes G., Onate A., Narayan S., Celentano D., Garcia-Herrera C., et al. Computational shape design optimization of femoral implants: towards efficient forging manufacturing. Applied Sciences. 2024;14(18):8289. https://doi.org/10.3390/app14188289.
17. Razumovskij E.S., Shavshukov V.E., Anoshkin A.N. Prediction of the bearing capacity of a hip arthroplasty made of carbon-carbon composite material. Vestnik Permskogo nacional'nogo issledovatel´skogo politekhnicheskogo universiteta. Mekhanika = Bulletin of the Perm National Research Polytechnic University. Mechanics. 2022;(4):80-89. (In Russ.) https://doi.org/10.15593/perm.mech/2022.4.08.
18. Shavshukov V., Tashkinov A., Strzhemechny Y. M., Hui D. Modelling of pseudoplastic deformation of carbon/carbon composites with pyrocarbon. Modelling and Simulation in Materials Science and Engineering. 2008;16(5):055001. https://doi.org/10.1088/0965-0393/16/5/055001.
19. Tashkinov A.A., Shavshukov V.E. Inhomogeneities of deformation fields in grains of polycrystalline materials and the Eshelby problem. Vestnik Permskogo nacional´nogo issledovatel´skogo politekhnicheskogo universiteta. Mekhanika = Bulletin of the Perm National Research Polytechnic University. Mechanics. 2018;(1):58-72. (In Russ.) https://doi.org/10.15593/perm.mech/2018.1.05.
20. Razumovskij E.S., Shavshukov V.E. Damage to the ion engine electrode material during the launch of the spacecraft into low-Earth orbit. Vestnik Permskogo nacional´nogo issledovatel´skogo politekhnicheskogo universiteta. Aerokosmicheskaya tekhnika = Bulletin of the Perm National Research Polytechnic University. Aerospace engineering. 2024;(78):75-94. (In Russ.) https://doi.org/10.4028/10.15593/2224-9982/2024.78.07.
21. Peng Y., Arauz P., An S., Kwon Y.M. In vivo sliding distance on the metal-on-polyethylene total hip arthroplasty articulation using patient-specific gait analysis. Journal of Orthopaedic Research. 2018;36(12):3151-3160. https://doi.org/10.1002/jor.24113.
22. García-Aznar J.M., Nasello G., Hervas-Raluy S., Pérez M.Á., Gómez-Benito M.J. Multiscale modeling of bone tissue mechanobiology. Bone. 2021;151(6). https://doi.org/10.1016/j.bone.2021.116032.
23. Blöß T., Welsch M. RVE Procedure for estimating the elastic properties of inhomogeneous microstructures such as bone tissue. Lecture Notes in Applied and Computational Mechanics. 2015;74:17. https://doi.org/10.1007/978-3-319-10981-7_1.
24. Shermergor T.D. Theory of elasticity of microuniform media. Moscow: Nauka; 1977. 399 p.
25. Christensen R., Mccoy J. Mechanics of composite mateials. Journal of Applied Mechanics; 1980;47:460. https://doi.org/10.1115/1.3153710.
Supplementary files
Review
For citations:
Razumovskii E.S., Shavshukov V.E. Accumulation of damage in the femoral component of the hip arthroplasty made of Carbon-Carbon composite material. Proceedings of the Southwest State University. Series: Engineering and Technology. 2025;15(2):132-148. (In Russ.) https://doi.org/10.21869/2223-1528-2025-15-2-132-148