Emergent Properties of Magnetic Ions and Nanoparticles in Micellar Solutions of Surfactants
Abstract
Purpose. Report the emergent (unexpected) properties of magnetic materials compared to those expected when they are obtained in aqueous micellar solutions of surfactants (aqueous quantum materials).
Methods. Chemical synthesis of magnetic nanoparticles in aqueous micellar solutions of surfactants of various nature. Characterization of magnetic solutions and nanoparticles by magnetic measurements, spectroscopy, diffractometry, small-angle X-ray diffraction, scanning probe microscopy, and others.
Results. The term 'water quantum material' refers to materials (micellar solutions) whose properties are mainly determined by the nuclear quantum effect at macroscopic scales (emergent property) and which exhibit phenomena and functionality not expected in the classical theory of micellization. The nuclear quantum effect is described in the articles and patents of the authors and is the mainstream of the modern scientific direction. The article presents in detail the experimentally confirmed emergent properties of magnetic materials obtained in aqueous micellar solutions of surfactants. In particular, Gd3+ ions in an aqueous micellar solution of sodium dodecyl sulfate (SDS) exhibit paramagnetic properties, while in liquid crystals (CH3COO–)3Gd3+–water–undecane they exhibit ferromagnetic properties. Hybrid Gd/Pt nanoparticles obtained in a quantum material with cetylpyridinium chloride (CPC) Pt-Gd exhibit anomalous magnetic properties. Nanosized powders of cobalt ferrite and nickel ferrite obtained in a micellar solution of sodium dodecyl sulfate have superparamagnetic properties, which is typical for magnetic nanomaterials.
Conclusion. The synthesis of nanoparticles in a quantum material opens up the possibility of reducing ions of different signs in one stage during the processing of metallurgy waste in order to obtain nanoparticles of various metals and their composites. Magnetic nanoparticles obtained in a quantum surfactant material self-assemble on various substrates, which makes it possible to create materials whose residual magnetization and coercive field can be controlled at room temperatures.
Keywords
About the Authors
Yu. A. MirgorodRussian Federation
Yuri A. Mirgorod, Dr. of Sci. (Chemistry), Leading Researcher Regional Center for Nanotechnology
50 Let Oktyabrya Str. 94, Kursk 305040
N. A. Borsch
Russian Federation
Nikolay A. Borsch, Cand. of Sci. (Chemistry), Senior Research of the Regional Center of Nanotechnology
50 Let Oktyabrya Str. 94, Kursk 305040
A. M. Storozhenko
Russian Federation
Anastasia M. Storozhenko, Cand. of Sci. (Physics and Mathematics), Senior Research of the Regional Center of Nanotechnology
50 Let Oktyabrya Str. 94, Kursk 305040
L. A. Ageeva
Russian Federation
Liliy S. Ageeva, Research of the Regional Center of Nanotechnology
50 Let Oktyabrya Str. 94, Kursk 305040
References
1. Wilasinee Hatakeyama, Talia J. Sanchez, Misty D. Rowe, eds. Synthesis of gadolinium nanoscale metal−organic framework with hydrotropes: manipulation of particle size and magnetic resonance imaging capability. ACS Appl. mater. Interfaces, 2011, vol. 3, no. 5, pp. 1502–1510.
2. Lu A. H., Salabas E. L., Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization and application. Angewandte Chem. (International ed. in English), 2007, vol. 46, no. 8, pp. 1222–1244.
3. Gyu Leem, Subhasis Sarangi, Shishan Zhang, eds. Surfactant-controlled size and shape evolution of magnetic nanoparticles. Crystal. Growth Des., 2009, vol. 9, pp. 32–34.
4. Shamim N., Hong L., Hidajat K., eds. Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: Preparation and characterization. Colloids Surfaces B: Biointerfaces, 2007, vol. 55, no. 1, pp. 51–58.
5. Borsch N. A., Kuvardin N. V., Ageeva L. S. Sintez nanochastits osnovnogo atsetata medi (II) v mitsellyarnykh vodnykh rastvorakh i ikh samoorganizatsiya v plenochnykh strukturakh [Synthesis of Nanoparticles of basic copper (II) acetate in micellar aqueous solutions and their self-organization in film structures]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2020, vol. 10, no. 4, pp. 137–158.
6. Holmberg K., Jönsson B., Kronberg B., eds. Surfactants and polymers in aqueous solutions. Wiley, UK, 2003. 568 p.
7. Mirgorod Yu. A., Chekadanov A. S., Yanushkevich A. M., eds. Magnetic properties of Gd (III) in aqueous micellar systems. Magnetohydrodynamics, 2018, vol. 54(3), pp. 299–308.
8. Mirgorod Yu. A., Borshch N. A. Sposob polucheniya nanochastits metallov ili gibridov nanochastits metallov [Method for obtaining metal nanoparticles or hybrids of metal nanoparticles]. Patent RF, no. 2369466, 2009.
9. Mirgorod Yu. A., Borsch N. A., Borodina V. G., Yurkov G. Yu. Poluchenie i kharakterizatsiya khlopchatobumazhnoi tkani, modifitsirovannoi nanochastitsami medi [Preparation and characterization of cotton fabric modified with copper nanoparticles]. Khimicheskaya promyshlennost'= Chemical industry, 2012, vol. 89, no. 6, pp. 310–316.
10. Vorobiova I. G., Borshch N. A., Mirgorod Yu. A. The structure of Mn and Co nanoparticles obtained in direct surfactant micelles. Journal of Nano- and Electronic Physics, 2017, vol. 9, no. 5, pp. 050361–05036-4.
11. Geesink H. J. H., Jerman I., Meijer D. K. F. Water, the cradle of life via its coherent quantum frequencies. Water, 2020, no. 11, pp. 78–108.
12. Contrast Agents I: Magnetic Resonance Imaging; ed. by W. Krause. Heidelberg, Springer, Berlin, 2002, vol. 1, 249 p.
13. Salt C., Lennox A. J., Takagaki M. Boron and gadolinium neutron capture therapy. Rus. Chem. Bull., Intern. Ed., 2004, vol. 53, no. 9, pp. 1871–1888.
14. Tokura Y., Kawasaki M., Nagaosa N. Giant topological Hall effect in correlated oxide thin films. Nature Phys., 2017, vol. 13, pp. 1056–1068.
15. Mirgorod Yu. A., Emelyanov S. G., Pugachesky M. A. Sposob izmereniya parametrov fazovogo perekhoda zhidkost'-zhidkost' i mitselloobrazovaniya [Method for measuring the parameters of liquid-liquid phase transition and micellization]. Patent RF, no. 2730433, 2020.
16. Mirgorod Yu. A. Sposob izmereniya parametrov fazovogo perekhoda zhidkost'-zhidkost' [Method for measuring the parameters of the liquid-liquid phase transition]. Patent RF, no. 2720399, 2020.
17. Mirgorod Yu. A. Quantum nuclear effect in aqueous ionic surfactant and polyelectrolytes solutions. Bio-Inspired Nanomaterials - Nature Conferences. Seoul, South Korea, 2021. https://doi.org/10.13140/RG.2.2.32364.08325
18. Mirgorod Yu. A., Chekadanov A. S., Storogenko A. M. Supplementary information for nuclear quantum effect in aqueous micellar surfactant solutions. Content uploaded by Mirgorod Yu. Available at: http://www.researchgaate.net/publication/359368949 (accessed 02.09.2022). https://doi.org/10.13140/RG.2.2.20090.98242
19. Mirgorod Yu. A., Borshch N. A., Reutov A. A., Yurkov G. Yu., Fedosyuk V. M. Sintez nanochastits na osnove gadoliniya v sisteme pryamykh mitsell PAV i issledovanie ikh magnitnykh svoistv [Synthesis of nanoparticles based on gadolinium in the system of direct surfactant micelles and study of their magnetic properties]. Zhurnal prikladnoi khimii = Journal applied chemistry, 2009, vol. 82, no. 8, pp. 1261–1267.
20. Masafumi Harada, Kenji Saijo, Naoki Sakamotoet, eds. Small-angle X-ray scattering study of metal nanoparticles prepared by photoreduction in aqueous solutions of sodium dodecyl sulfate. Colloids and Surfaces A: Physicochem. Eng. aspects., 2009, vol. 345, pp. 41–50.
21. Mirgorod Yu. A., Borsch N. A., Fedosyuk V. M., Yurkov Yu. G. Struktura i magnitnye svoistva nanochastits ferrita kobal'ta, sintezirovannykh v sisteme pryamykh mitsell amfifilov s ispol'zovaniem ionnoi flotoekstraktsii [Structure and magnetic properties of cobalt ferrite nanoparticles synthesized in a system of direct amphiphile micelles using ionic flotation extraction]. Zhurnal fizicheskoi khimii = Journal of Physical Chemistry, 2012, vol. 86, no. 3, pp. 489–495.
22. Mirgorod Yu. A., Borsch N. A., Fedosyuk V. M., Yurkov G. Yu. Magnitnye svoistva nanochastits ferrita nikelya, poluchennykh flotoekstraktsionnym metodom [Magnetic properties of nickel ferrite nanoparticles obtained by the flotation extraction method]. Neorganicheskie materialy = Inorganic materials, 2012, vol. 48, no. 12, pp. 1375–1380.
23. Hansen M. F., Morup S. J. Estimation of blocking temperatures from ZFC/FC curves. Magn. mater., 1999, vol. 203, pp. 214–216.
24. Mirgorod Yu. A., Borsch N. A., Yurkov Yu. G. Poluchenie nanomaterialov iz vodnykh rastvorov, modeliruyushchikh otkhody gidrometallurgii [Obtaining nanomaterials from aqueous solutions simulating hydrometallurgy waste]. Zhurnal prikladnoi khimii = Journal of Applied Chemistry, 2011, vol. 84, no. 8, pp. 1249–1253.
25. Mirgorod Yu. A., Emelyanov S. G. Kompleksnaya tekhnologiya polucheniya nanomaterialov iz bednykh rud i otkhodov [Complex technology for obtaining nanomaterials from poor ores and waste]. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Physical and Technical Problems of Mining, 2015, no. 1, pp. 153–162.
26. Benjamin Matt Kirsten, Pondman Kirsten, Pondman Sarah. Soft magnets from the self-organization of magnetic nanoparticles in twisted liquid crystals. Angewandte Chem., 2014, vol. 53, p. 46.
27. Lisiecki I. From the Co Nanocrystals to their self-organizations: towards ferromagnetism at room temperature. Actaphys. Polonica A, 2012, vol. 121, no. 2, pp. 426–433.
28. Seth B. Darling, Nataliya A. Yufa, Amadou L. Cisse, eds. Self-organization of FePt nanoparticles on photochemically modified diblock copolymer templates. Adv. mater., 2005, vol. 17, pp. 2446–2450.
29. Rusanov A. I., Nekrasov A. G. One more extreme near the critical micelle concentration: optical activity. Langmuir, 2010, vol. 26, pp. 13767–13769.
30. Farinato R. S., Rowell R. L. Transient light scattering in aqueous surfactant systems. J. Colloid and Interface Sci., 1978, vol. 66, pp. 483–489.
31. Mohd Y. N. S. The effect of sonication on the ion exchange constant, kxbr of ctabr/chlorobenzoates micellar systems. Ultrasonics Sonochemistry, 2021, vol. 71, pp. 105360.
32. Maestro L. M., Marqués M. I., Camarillo E., eds. On the existence of two states in liquid water: impact on biological and nanoscopic systems. Int. J. Nanotech, 2016, vol. 13, pp. 89. https://doi.org/10.1504/IJNT.2016.079670
33. Spirin M. G., Brichkin S. B., Razumov V. F. Diffusion-controlled adsorption kinetics at the interface between air and aqueous micellar solution of heptaethylene glycol monododecyl ether. Colloidal Journal, 2013, vol. 75, no. 4, pp. 427–432.
34. Hongyou Fan, Leve E. W., Scullin C. Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano Lett., 2005, vol. 5, no. 4, pp. 645–648.
35. Rusanov A. I., Krotov V. V., Nekrasov A. G. Extremes of some foam properties and elasticity of thin foam films near the critical micelle concentration. Langmuir, 2004, vol. 20, no. 4, pp. 1511–1516. https://doi.org/10.1021/la0358623
Review
For citations:
Mirgorod Yu.A., Borsch N.A., Storozhenko A.M., Ageeva L.A. Emergent Properties of Magnetic Ions and Nanoparticles in Micellar Solutions of Surfactants. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(4):222-238. (In Russ.)