Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Development of X-Ray Fluorescence Analysis Technique Starting Metallurgical Mixtures

https://doi.org/10.21869/2223-15282022-12-4-209-221

Abstract

Purpose of the study. To study the conditions for determining the normalized components SiO2, Cr2O3, Al2O3, Fe2O3, MgO in starting metallurgical mixtures by X-ray fluorescence spectrometry. Justify the method of sample preparation for analysis by pressing and fusion. Set the optimal parameters of the device, allowing for precise determination of normalized components in starting mixtures. To develop a technique for X-ray fluorescence analysis of metallurgical starting mixtures. Evaluate the reproducibility and correctness of the determination of normalized components. Methods. The determination of SiO2, Cr2O3, Al2O3, Fe2O3, MgO was carried out on a ZSX Primus IV X-ray fluorescence wave-dispersive spectrometer (Rigaku, Japan), sample preparation was carried out by pressing the analyzed sample on a boric acid substrate (Herzog hydraulic press, Germany) and fusion (Katanax fusion furnace, Canada). The parameters of the X-ray fluorescence spectrometer have been optimized for the precise determination of normalized components. The parameters of calibration curves for the determination of oxides in starting mixtures have been established. 

Results. A technique has been developed for the simultaneous determination of all normalized components in starting mixtures CCT-X, CCT-2, Borstart, Start-RMK-SSC, Theramer Fill 135, which are most commonly used in metallurgical production. Due to the lack of standard samples of metallurgical starting mixtures, the assessment of reproducibility and accuracy of determination was carried out using standard samples that are as close as possible in composition to the analyzed samples and production samples that were previously analyzed according to the methods recommended by GOST. The developed technique for X-ray fluorescence analysis of metallurgical starting mixtures can be recommended for use in laboratories of metallurgical enterprises.

Conclusion. The developed method does not contain systematic errors and is characterized by high precision, allows you to quickly and reliably carry out the simultaneous determination of normalized components in starting mixtures, reduces the consumption of reagents compared to currently used methods of analysis in practice.

About the Authors

Yu. S. Shekhovtsova
Lipetsk State Technical University; PAO "Novolipetsk Metallurgical Plant"
Russian Federation

Yulia S. Shekhovtsova, Undergraduate of the Department of Chemistry

30 Moskovskaya Str., Lipetsk 398600

2 Metallurgov Ave., Lipetsk 398040



V. A. Roldugina
PAO "Novolipetsk Metallurgical Plant"
Russian Federation

Valeria A. Roldugina, Engineer of the Analytical Control Laboratory

2 Metallurgov Ave., Lipetsk 398040



T. N. Ermolayeva
Lipetsk State Technical University
Russian Federation

Tatyana N. Ermolayeva, Dr. of Sci. (Chemistry), Professor, Professor of the Department of Chemistry

30 Moskovskaya Str., Lipetsk 398600



References

1. Visloguzova E. A., Serova L. V., Khoroshih M. A. Startovye smesi dlya shibernykh zatvorov – neobkhodimoe uslovie proizvodstva kachestvennogo metalla [Starting mixtures for slide gates - a necessary condition for the production of quality metal]. Stal' = Steel, 2008, no. 6, рp. 33–34.

2. Zemlyanoy K. G., Kurovsky A. A. Startovye smesi novogo pokoleniya [Starter mixes of new generation]. Novye ogneupory = New refractories, 2007, no. 3, pp. 36–38.

3. AM 05757665-252-002-2016. Metodika (metod) izmerenii. Ogneupory i ogneupornoe syr'e, izvestnyaki i izvestkovye materialy, flyusy, shlakovye materialy i shlakoobrazuyushchie smesi. Opredelenie massovykh dolei oksida kremniya (IV), oksida kal'tsiya, oksida magniya, oksida alyuminiya, oksida margantsa (II), oksida titana (IV), oksida khroma (III), oksida tsirkoniya (IV), oksida zheleza (III), oksida vanadiya (V), oksida fosfora (V), sery atomno-emissionnym metodom s induktivno-svyazannoi plazmoi. FR.1.31.2016.23823 [AM 05757665-252-002-2016. Method (method) of measurements. Refractories and refractory raw materials, limestones and lime materials, fluxes, slag materials and slag-forming mixtures. Determination of the mass fractions of silicon(IV) oxide, calcium oxide, magnesium oxide, aluminum oxide, manganese (II) oxide, titanium (IV) oxide, chromium (III) oxide, zirconium (IV) oxide, iron (III) oxide, vanadium (V) oxide, phosphorus (V) oxide, sulfur by atomic emission method with inductively coupled plasma]. FR.1.31.2016.23823. Available at: http://docs.cntd.ru/document/4374144945 (accessed 08.20.2022).

4. Yakubenko E. S., Tolmachyeva O. V., Chernikova I .I., Ermolaeva T. N. Analys of siliceous refractories by coupled plasma atomic enission spectroscopy in comdination with microwave sample preparation. Inorganic Materials. 2018, vol. 54, no. 14, pp. 30–35.

5. Geisler S., Okruss M., Becker-Ross H., Huang M. D., Esser N., Florek S. Spectrometer system using a modular echelle spectrograph and a laser-driven continuum source for simultaneous multi-element determination by graphite furnace absorption spectrometry. Spectrochim. Acta, Part B, 2015, vol. 107, pp. 11–16.

6. West М., Ellis A. T., Potts P. J., eds. Atomic spectrometry update–X-ray fluorescence spectrometry. J. Anal. At. Spectrom., 2012, vol. 27, pp. 1603–1645.

7. Losev N. F., Smagunova A. N. Osnovy rentgenospektral'nogo fluorestsentnogo analiza [Fundamentals of X-ray fluorescence analysis]. Moscow, Chemistry Publ., 1982. 208 р.

8. Mosichev V. I., Kalinkin I. P., Nikolaev G. I. Metody atomnoi spektroskopii. Atomno-emissionnyi, atomno-absorbtsionnyi i rentgenofluorestsentnyi analiz. Kn. 2. Metally i splavy. Analiz i issledovanie [Methods of atomic spectroscopy. Atomic-emission, atomic-absorption and X-ray fluorescence analysis. Book 2. Metals and alloys. Analysis and research]; ed. by V. I. Mosichev. St. Petersburg, NPO "Professional", 2006, 716 р.

9. Smirnova A. N., Pavlova K. I. Primenenie rentgenofluorestsentnogo metoda dlya kontrolya kachestva iskhodnogo syr'ya i standartizatsii ego parametrov v chernoi metallurgii [Application of X-ray fluorescent method for quality control of raw materials and standardization of its parameters in ferrous metallurgy]. Ogneupory i tekhnicheskaya keramika = Refractories and technical ceramics, 2016, no. 3-4, pp. 23–25.

10. Chubarov V. M., Amosova A. A., Finkelstein A. L. Rentgenofluorestsentnoe opredelenie rudnykh elementov zhelezomargantsevykh obrazovanii [X-ray fluorescence determination of ore elements of ironmanganese formations]. Zavodskaya Laboratoriya. Diagnostika Materialov = Factory Laboratory. Diagnostics of Materials, 2019, vol. 85, no. 12, pp. 5–13.

11. Revenko A. G. Rentgenospektral'nyi fluorestsentnyi analiz prirodnykh materialov [X-Ray Spectral Fluorescence Analysis of Natural Materials]. Novosibirsk, Nauka Publ., Sib. Izd. firma, 1994. 264 p.

12. Jurchich I., Berg H. Primenenie RFA v chernoi metallurgii [Application of RFA in ferrous metallurgy]. Moscow, Metallurgiya Publ., 1985. 256 p.

13. Smagunova A. N., Rozova A. F., Skribko N. N. [X-ray fluorescence analysis of powder products of ferrous metallurgy (review)]. Zavodskaya Laboratoriya. Diagnostika Materialov = Factory laboratory. Diagnostics of materials, 1997, no. 9, pp. 28–35.

14. Karpov Yu. A., Savostin A. P. Metody probootbora i probopodgotovki [Sampling methods and sample preparation]. Moscow, Binom, Laboratorya znanii Publ., 2003. 243 p.

15. Kuzmina T. G., Troneva M. A., Kononkova N. N., Romashova T. V. O pogreshnosti probopodgotovki pri pressovanii izluchatelei dlya rentgenofluorestsentnogo analiza [On the error of sample preparation when pressing emitters for X-ray fluorescence analysis]. Zhurnal analiticheskoi khimii = Journal of Analytical Chemistry, 2017, vol. 72, no. 3, pp. 218–225.

16. Suvorov S. A., Arbuzova N. V. Struktura plavlenoi legirovannoi alyumo-magnezial'noi shpineli [Structure of fused alloyed aluminomagnesia spinel]. Ogneupory i tekhnicheskaya keramika = Refractories and technical ceramics, 2010, no. 4–5, pp. 3–6.

17. Borchodaev B. Ya., Penyevsky S. D., Sotskaya О. Т. Podgotovka legirovannykh steklyannykh litii-boratnykh diskov dlya rentgenofluorestsentnogo analiza gornykh porod na plavil'noi ustanovke VULCAN 4 [Preparation of doped glass lithium-borate disks for X-ray fluorescence analysis of rocks at the VULCAN 4 smelter]. Analitika i kontrol' = Analytics and control, 2013, vol. 17, no. 2, pp. 141–147.

18. Nakayama K., Shibata Y., Nakamura T. Glass beads X-ray fluorescence analyses of 42 components in felsic rocks. X-ray Spectrometry, 2007, vol. 36, pp. 130–140.

19. Borchodoev V. Ya. O predele obnaruzheniya v rentgenofluorestsentnom analize [About the limit of detection in X-ray fluorescence analysis]. Zhurnal analiticheskoi khimii = Journal of Analytical Chemistry, 2014, vol. 69, no. 11, pp. 1141–1146.

20. RMG 61-2010. Gosudarstvennaya sistema obespecheniya edinstva izmerenii. Pokazateli tochnosti, pravil'nosti, pretsizionnosti metodik kolichestvennogo khimicheskogo analiza. Metody otsenki [RMG 61-2010 State System for Ensuring Uniformity of Measurements. Indicators of accuracy, correctness, precision of methods of quantitative chemical analysis. Evaluation methods]. Moscow, Izd-vo Standartov Publ., 2013. 58 p.

21. M24-2012. Rekomendatsiya. Attestatsiya metodik (metodov) izmerenii pokazatelei sostava i svoistv ob"ektov metallurgicheskogo proizvodstva, proizvodstvennogo ekologicheskogo kontrolya, monitoringa sostoyaniya okruzhayushchei prirodnoi sredy, khimicheskikh faktorov proizvodstvennoi sredy [M24-2012. Recommendation. Validation of methods (methods) of measurement of composition and properties of metallurgical production facilities, industrial environmental control, environmental monitoring, chemical factors of industrial environment]. Ekaterinburg, Institut standartnuh obraztsov, 2012. 20 p.

22. Yakubenko E. S., Voitkova Z. A., Ermolaeva T. N. Mikrovolnovaya probopodgotovka ogneuporov i ogneupornogo syr'ya dlya opredeleniya oksidov magniya, alyuminiya, kremniya, kal'tsiya i zheleza (III) metodom AES-ISP [Microwave sample preparation of refractories and refractory raw materials for the determination of magnesium, aluminum, silicon, calcium, and Iron(III) Oxides by ICP AES]. Zavodskaya Laboratoriya. Diagnostika Materialov = Factory laboratory. Diagnostics of materials, 2014, vol. 80, no. 3, pp. 15–19.

23. M 05757665-072-0172-2020. Metodika otsenki pokazatelya vnutrilaboratornoi pretsizionnosti rezul'tatov kolichestvennogo khimicheskogo analiza [M 05757665-072-0172-2020. Methodology for the evaluation of intra-laboratory precision index of quantitative chemical analysis results]. Lipetsk, PAO NLMK, 2020, pp. 5–6.


Review

For citations:


Shekhovtsova Yu.S., Roldugina V.A., Ermolayeva T.N. Development of X-Ray Fluorescence Analysis Technique Starting Metallurgical Mixtures. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(4):209-221. (In Russ.) https://doi.org/10.21869/2223-15282022-12-4-209-221

Views: 212


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)