Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Effect of CdSe/CdS/ZnS quantum dots on the efficiency of LED devices

https://doi.org/10.21869/2223-1528-2025-15-1-82-94

Abstract

Purpose of research. To determine the influence of red colloidal quantum dots with the CdSe/CdS/ZnS structure on the luminous efficiency and color rendering index of LED devices.
Methods. Microscopic, fluorescent and micro-X-ray studies of a silicone composite with red colloidal quantum dots CdSe/CdS/ZnS and phosphor powder of yttrium-aluminum garnet in white LEDs with a single InGaN chip as a 453.7 nm excitation source were carried out. Goniophotometric measurements of the spatial distribution of luminous intensity together with a spectrocolorimeter made it possible to determine the luminous efficiency and color rendering index of white LEDs.
Results. The powder mixture of yttrium aluminum garnet particles obtained in this work with red colloidal quantum dots with a CdSe/CdS/ZnS structure stabilized with trioctylphosphine and trioctylphosphine oxide applied to their surface in the form of an island film and with wavelengths of luminescence maxima in the range from 590 to 630 nm under industrial production conditions made it possible to manufacture more than 100 white SMD LEDs with an improvement in luminous efficiency by 11%. For cold and neutral white light with chromaticity coordinates from x = 0.332 and y = 0.318 to x = 0.404 and y = 0.401 in the CIE 1931 color space, the color rendering index Ra of white LEDs with quantum dots exceeded 90 with red color index R9 values from 63 to 81.
Conclusion. This paper shows the efficiency of using red quantum dots based on II-VI semiconductors for white LEDs with a quantum yield of at least 50% at a controlled concentration corresponding to the yttrium-aluminum garnet powder weight, due to the absence of a luminescence shift to the IR region, which is characteristic of the CaAlSiN3 nitride phosphor.

About the Authors

A. P. Kuzmenko
Southwest State University
Russian Federation

Aleksander P. Kuzmenko, Doctor of Science (Physics and Mathematics), Professor, Chief Researcher of the Regional Center of Nanotechnology

Kursk



V. V. Rodionov
Southwest State University
Russian Federation

Vladimir V. Rodionov, Candidate of Science (Physics and Mathematics), Senior Researcher of the Regional Center of Nanotechnology

Kursk



A. Ig. Kolpakov
Southwest State University
Russian Federation

Artem Ig. Kolpakov, Post-Graduate Student

Kursk



D. S. Belkin
South-west State University
Russian Federation

Dmitry S. Belkin, Post-Graduate Student

Kursk



E. G. Esaulkova
Southwest State University
Russian Federation

Elizabeth G. Esaulkova, Student of the Department of Nanotechnology, Microelectronics and Engineering Physics

Kursk



A. S. Sizov
Southwestern State University

Alexander S. Sizov, Doctor of Sciences (Engineering), Professor of the Department Engineering Program

Kursk



D. P. Anikin
LLC "RUSID"
Russian Federation

Dmitry P. Anikin, General Manager

Armavir



References

1. Pimputkar S., Speck J. S., DenBaars S. P., Nakamura S. Prospects for LED lighting // Nature photonics. - 2009. - Vol. 3. - No. 4. - P. 180-182. https://doi.org/10.1038/nphoton.2009.32

2. Kuzmenko A. P., Anikin D. P., Rodionov V. V. Influence of structural properties of phosphors on increasing the color rendering index of a white LED // Bulletin of the South-West State University. Series: Engineering and Technology. 2021. Vol. 11, No. 3. P. 93–108.

3. Yang Z., Li X., Yang Y., Li X. The influence of different conditions on the luminescent properties of YAG:Ce phosphor formed by combustion //Journal of Luminescence. - 2007. - Vol. 122. - P. 707-709. https://doi.org/10.1016/j.jlumin.2006.01.266

4. Novikov E. A., Kuzmenko A. P., Rodionov V. V., Emelianov V. M., Anikin D. P., Neruchev Yu. A. Influence of Ce3+ concentration and size of YAG crystalline particles on photoluminescence // Bulletin of the South-West State University. Series: Engineering and Technology. - 2024. - Vol. 14. - No. 1. - P. 59-75. https://doi.org/10.21869/2223-1528-2024-14-1-59-75

5. George N. C., Denault K. A., Seshadri R. Phosphors for solid-state white lighting //Annual Review of Materials Research. - 2013. - Vol. 43. - P. 481-501. https://doi.org/10.1146/annurev-matsci-073012-125702

6. Borovsky E. OSCONIQ S 3030 QD LEDs on quantum dots // Modern lighting engineering. - 2019. - No. 5. - P. 14-15.

7. García de Arquer F. P., Talapin D. V., Klimov V. I., Arakawa Y., Bayer M., Sargent E. H. Semiconductor quantum dots: Technological progress and future challenges // Science. - 2021. - Vol. 373. - No. 6555. - P. eaaz8541. https://doi.org/10.1126/science.aaz8541

8. Hofmann M., Rocheva V. New LED for outdoor lighting // Semiconductor lighting technology. - 2021. - No. 3. - P. 4-7.

9. Wood V., Bulović V. Colloidal quantum dot light-emitting devices // Nano reviews. - 2010. - Vol. 1. - No. 1. – P. 5202. https://doi.org/10.3402/nano.v1i0.5202 10. Eren G. O., Sadeghi S., Bahmani Jalali H., Ritter M., Han M., Baylam I., Nizamoglu S. Cadmium-free and efficient type-II InP/ZnO/ZnS quantum dots and their application for LEDs //ACS Applied Material s & Interfaces. – 2021. – T. 13. – No. 27. – pp. 32022-32030. https://pubs.acs.org/doi/10.1021/acsami.1c08118.

10. Jang E., Jun S., Jang H., Lim J., Kim B., Kim Y. White-light-emitting diodes with quantum dot color converters for display backlights //Advanced materials. – 2010. – T. 22. – No. 28. – pp. 3076-3080. https://doi.org/10.1002/adma.201000525 12. Kim N. H., Jeong J., Chae H. White Light Emission with Quantum Dots: A Review // Applied Science and Convergence Technology. – 2016. – T. 25. – No. 1. – pp. 1-6. https://doi.org/10.5757/ASCT.2016.25.1.1 13. Nizamoglu S., Mutlugun E., Özel T., Demir H. V., Sapra S., Gaponik N., Eychmüller A. Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaN∕ Ga N light emitting diodes for high-quality white light generation //Applied Physics Letters. – 2008. – T. 92. – No. 11. https://doi.org/10.1063/1.2898892 14. Onal A., Eren G. O., Sadeghi S., Melikov R., Han M., Karatum O., Nizamoglu S. High-performance white light-emitting diodes over 150 lm/W using near-unity-emitting quantum dots in a liquid matrix //ACS Photonics. – 2022. – T. 9. – No. 4. – pp. 1304-1314. https://pubs.acs.org/doi/10.1021/acsphotonics.1c01805.

11. Song W. S., Yang H. Efficient white-light-emitting diodes fabricated from highly fluorescent copper indium sulfide core/shell quantum dots // Chemistry of Materials. – 2012. – T. 24. – No. 10. – S. 1961-1967. https://doi.org/10.1021/cm300837z 16. Onal A., Eren G. O., Melikov R., Kaya L., Nizamoglu S. Quantum Dot Enabled Efficient White LEDs for Wide Color Gamut Displays //Advanced Materials Technologies. – 2023. – T. 8. – No. 9. – P. 2201799. https://doi.org/10.1002/admt.202201799 17. Dai X., Zhang Z., Jin Y., Niu Y., Cao H., Liang X., Peng X. Solution-processed, high-performance light-emitting diodes based on quantum dots // Nature. – 2014. – V. 515. – № 7525. – P. 96-99. https://doi.org/10.1038/nature13829

12. Jun S., Lee J., Jang E. Highly luminescent and photostable quantum dot–silica monolith and its application to light-emitting diodes //Acs Nano. – 2013. – V. 7. – №. 2. – P. 1472-1477.

13. Oglukova K. D., Rodionov V. V. Production of luminescent nanoparticles with quantum dots. – JSC “University Book” Conference: Current Issues in Science, Nanotechnology, and Production Kursk, December 14, 2023 Organizers: South-West State University

14. Trepachev A. V., Rodionov V. V., Anikin D. P. Study of the Spectral Characteristics of a Photocell // Current Issues in Science, Nanotechnology, and Production. – 2021. – pp. 246-249.

15. Erdem T., Nizamoglu S., Sun X. W., Demir H. V. A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores // Optics Express. – 2010. – Vol. 18. – No. 1. – pp. 340-347. https://doi.org/10.1364/OE.18.000340

16. Zhang Z., Ye Y., Pu C., Deng Y., Dai X., Chen X., Jin Y. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots //Advanced Materials. – 2018. – T. 30. – No. 28. – P. 1801387. https://doi.org/10.1002/adma.201801387

17. Xu M., Chen D., Lin J., Lu X., Deng Y., He S., Jin Y. Quantum-dot light-emitting diodes with Fermi-level pinning at the hole-injection/hole-transporting interfaces //Nano Research. – 2022. – T. 15. – No. 8. – pp. 7453-7459. https://doi.org/10.1007/s12274-022-4260-3

18. Tian Y., Qin Z. Y., Zou S. J., Li Y. Q., Wang Y., Wang W., Tang J. X. Efficient quantum-dot light-emitting diodes featuring the interfacial carrier relaxation and exciton recycling // Materials Today Energy. – 2021. – T. 20. – P. 100649. https://doi.org/10.1016/j.mtener.2021.100649


Review

For citations:


Kuzmenko A.P., Rodionov V.V., Kolpakov A.I., Belkin D.S., Esaulkova E.G., Sizov A.S., Anikin D.P. Effect of CdSe/CdS/ZnS quantum dots on the efficiency of LED devices. Proceedings of the Southwest State University. Series: Engineering and Technology. 2025;15(1):82-94. (In Russ.) https://doi.org/10.21869/2223-1528-2025-15-1-82-94

Views: 65


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)