Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Methods of active friction control in the presence of lubricant compositions with mesogenic additives

https://doi.org/10.21869/2223-1528-2024-14-3-165-177

Abstract

Purpose of research. The aim of the study is to systematize the latest literature data related to the modulation of the friction coefficient by external fields when using lubricant compositions with liquid crystal mesogens and polymer composites.

Methods. The article considers the methods of tribological tests using various schemes of friction pairs (cylinder-disk, pin-on-disk). Some commonly used methods of applying coatings to the elements of friction pairs are considered: ion beam-assisted deposition, chemical and physical thermal spraying, molecular layer deposition, photopolymerization, etc. Of the discussed methods of characterizing tribosystems, the following are indicated: dielectric spectroscopy, Raman scattering, polarization optical microscopy, nuclear-physical methods (positron annihilation spectroscopy and Xray diffraction).

Results. The article systematizes modern trends in the development of modulated modes of operation of tribological circuits with lubricant compositions containing liquid crystals and polymer composites. The following approaches are used to implement active control of the friction coefficient: 1) modulation of friction by an electric field, 2) modulation of friction by a temperature field, and 3) modulation of friction on optical gratings under light irradiation. These approaches take into account the changed characteristics of the lubricant associated with the use of mesogenic additives, modes of exposure to electromagnetic and thermal fields, electrical characteristics, geometry of the surface of friction pairs, and provide the values of tribological characteristics (friction coefficient and wear) that are achieved as a result of friction modulation.

Conclusion. A positive effect of mesogenic additives of liquid crystals and polymers on tribological characteristics with active control of the friction coefficient has been established: a decrease in the friction coefficient is observed, which helps to reduce material wear.

About the Authors

L. V. Elnikova
NRC Kurchatov Institute; Southwest State University
Russian Federation

Liliia V. Elnikova, Candidate of Sciences (Physics and Mathematics), Scientific Researcher; Senior Researcher of the Regional Center of Nanotechnology

25 Bolshaya Cheremushkinskaya Str., Moscow 117218

  50 Let Oktyabrya Str. 94, Kursk 305040



V. V. Belyaev
Federal State University of Education; Peoples' Friendship University of Russia named after Patrice Lumumba
Russian Federation

Victor V. Belyaev, Doctor of Sciences (Engineering), Leading Researcher of the Science Development Department, Professor of the Department of Fundamental Physics and Nanotechnology; Professor of the Department of Nanotechnologies and Microsystem Technology

24 Very Voloshinoi Str., Mytishci 141014

6 Miklukho-Maklaya Str., Moscow 117198

 



References

1. Dotsenko A.I., Buyanovskii I.A. Fundamentals of tribotechnics. Moscow: INFRA-M; 2014. 336 p. (In Russ.)

2. Chichinadze A.V., Brown E.D., Bushe N.A., Buyanovskii I.A., Gekker F.R., Goryache- va I.G., et al. Tribology basics (friction, wear, lubrication)]. Moscow: Mashinostroenie; 2001. 664 p. (In Russ.)

3. Kragelskii I.V., Dobychin M.N., Kombalov V.S. Fundamentals of fraction and wear calculations. Moscow: Mashinostroenie; 1977. 526 p. (In Russ.)

4. Frolov K.V. Modern tribology. Moscow: Nauka; 2008. 408 p. (In Russ.)

5. Usoltseva N.V., Smirnova A.I. Liquid crystals as lubricants. Lubricants. 2019;7:111–1–111-25. https://doi.org/10.3390/lubricants7120111

6. Usoltseva N.V., Akopova O.B., Bykova V.V., Smirnova A.I., Pikin S.A. Liquid crystals: discotic mesogens. Ivanovo: Ivanov. un-t., 2000. 546 p. (In Russ.)

7. Ermakov S. F. Tribilogy of liquid crystal nanomaterials and systems. Minsk: Belaruskaya navuka; 2012. 380 p. (In Russ.)

8. Eidenschink R. Liquid crystals in variable friction devices. Angewandte Chemie. 1988; 100(11):1639–1640.

9. Gao Y., Xue B., Ma L., Luo J. Effect of liquid crystal molecular orientation controlled by an electric field on friction. Tribology International. 2017;115:477–482. https://doi.org/10.1016/j.triboint.2017.06.021

10. Gao Y., Ma L., Luo J. Temperature-controlled friction coefficient lubricated by liquid crystal. Liquid Crystals. 2022;49(1):66–71. https://doi.org/10.1080/02678292.2021.1944355

11. Carrión F.-J., Martínez-Nicolás G., Iglesias P., Sanes J., Bermúdez M.-D. Liquid crystals in tribology. Int. J. Mol. Sci. 2009;10:4102–4115. https://doi.org/10.3390/ijms10094102

12. Kilpi L., Ylivaara O.M.E., Vaajoki A., Liu X., Rontu V., Sintonen S., et al. Tribological properties of thin films made by atomic layer deposition sliding against silicon. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2018;36:01A122-1–01A122-12. https://doi.org/10.1116/1.5003729

13. Jullien A., Meurisse M.-H., Berthier Y. Dowson D., et al. (eds.). Fractionated thin film lubrication. In: Thin Films in Tribology. Elsevier Science Publishers B.V.; 1993. P. 389–396.

14. Vanossi A., Dietzel D. Schirmeisen A., Meyer E., Pawlak R., Glatzel Th., Kisiel M., et al. Recent highlights in nanoscale and mesoscale friction. Beilstein J. Nanotechnol. 2018;9:1995–2014. https://doi.org/10.3762/bjnano.9.190

15. Lebedev O.V., Bogdanova O.I., Goncharuk G. P., Ozerin A.N. Tribological and percolation properties of polypropylene/nanodiamond soot composites. Polymers and Polymer Composites. 2020;28(6):369–377. https://doi.org/10.1177/0967391119879280

16. Levchenko V.A., Buyanovskii I.A., Bolshakov A.N., Matveenko V.N. Green tribology: orientation properties of diamond-like coatings of tribological units in lubricating media (review). Zhurnal prikladnoi khimii = Journal of applied chemistry. 2019;92(12):1499–1513. https://doi.org/10.1134/S0044461819120016. (In Russ.)

17. Cheng C.H.A., Kellogg L.H., Shkoller S., Turcotte D.L. A liquid-crystal model for friction. PNAS. 2008;105(23):7930–7935. https://doi.org/10.1073/pnas.0710990105

18. Scaraggi M., Carbone G., Persson Bo N.J., Dini D. Lubrication in soft rough contacts: A novel homogenized approach. Part I. Theory. Soft Matter. 2011;7:10395–10406. https://doi.org/10.1039/c1sm05128h

19. Scaraggi M., Carbone G., and Dini D. Lubrication in soft rough contacts: A novel homogenized approach. Part II. Discussion. Soft Matter. 2011;7:10407–10416. https://doi.org/10.1039/c1sm05129f

20. Ermakov S.F. The Effects of lubricants and additives on the tribological performance of solids. Part I. Passive Friction Control. Trenie i iznos = Journal of Friction and Wear. 2012;33(1):90–111.

21. Kupchinov B.I., Ermakov S.F., Parkalov V.P., Rodnenkov V.G., Bobrysheva S.N. Study of influence of liquid crystals on the friction of solids. Trenie i iznos = Journal of Friction and Wear. 1987; 8(4):29–32. (In Russ.)

22. Lahiri T., Pushkar S.K., Poddar P. Theoretical study on the effect of electric field for carbon nanotubes dispersed in nematic liquid crystal. Physica B. 2020;588:412177-1–412177-9. https://doi.org/https://doi.org/10.1016/j.physb.2020.412177

23. Friedrich K., Schlarb A.K., Tribology of polymeric nanocomposites: friction and wear of bulk materials and coatings. Amsterdam: Elsevier; 2011. 568 p.

24. Głogowski M.J., Hałuszka N. Effect of an electric field on friction of silicone rubber against steel in the motor base oil's environment. Journal of Electrostatics. 2017;88:214–217. https://doi.org/http://dx.doi.org/10.1016/j.elstat.2017.01.023

25. Liu H., Hao Guo Z., Xu F., Jia L., Pan Ch., Lin Wang Zh., et al. Triboelectric-optical responsive cholesteric liquid crystals for self-powered smart window, E-paper display and optical switch. Science Bulletin. 2021;66:1986–1993. https://doi.org/https://doi.org/10.1016/j.scib.2021.05.016

26. Wu P.-Ch., Hsu H.-T., Chen H.-L., Lee W. Dielectric characterization and voltage holding ratio of blue-phase cells. Displays. 2016;44:66–72. https://doi.org/ http://dx.doi.org/10.1016/j.displa.2015.11.003

27. Liua D., Broer D.J. Light controlled friction at a liquid crystal polymer coating with switchable patterning. Soft Matter. 2014;10:7952–7958. https://doi.org/10.1039/c4sm01249f

28. Wong L/, Hu C., Paradise R., Zhu Z., Shtukenberg A., Kahr B. Relationship between tribology and optics in thin films of mechanically oriented nanocrystals. J. Am. Chem. Soc. 2012;134:12245−12251. https://doi.org/dx.doi.org/10.1021/ja304799a

29. Xiang Zh., Li Yu., Zhou X., Bai P., Meng Yo, Ma L., Tian Yu. Sliding direction dependence of stick-slip in finger friction. Tribology International. 2024;191:109–141. https://doi.org/ https://doi.org/10.1016/j.triboint.2023.109141

30. Bandzierz K.S., Reuvekamp L.A.E.M., Dryzek J., Dierkes W.K., Blume A., Bieliński D. M. Effect of polymer chain modifications on elastomer properties. Rubber Chemistry and Technology. 2019;92(1):69–89. https://doi.org/https://doi.org/10.5254/RCT.18.826852019


Review

For citations:


Elnikova L.V., Belyaev V.V. Methods of active friction control in the presence of lubricant compositions with mesogenic additives. Proceedings of the Southwest State University. Series: Engineering and Technology. 2024;14(3):165-177. (In Russ.) https://doi.org/10.21869/2223-1528-2024-14-3-165-177

Views: 65


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)