Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Effect of Granulometric and Phase Transformations on the Photocatalytic Properties of Annealed Magnetron Titanium Dioxide Films

https://doi.org/10.21869/2223-15282022-12-4-180-193

Abstract

The purpose of the study is to reveal regularities between granulometric and phase transformations occurring during the thermal treatment of magnetron titanium dioxide films and their photocatalytic properties. 

Methods. The samples were synthesized using the magnetron sputtering device MVU TM "Magna T" (Russia) and the heater Mini Lamp Annealer MILA-5050. Morphological features and changes in the film surface structure after annealing were studied using a JEOL JSM-6610LV scanning electron microscope (SEM) (SEM, 20 kV, up to 100000×, X-Max Silicon Drift Detector, Oxford Instruments). The samples were characterized by small-angle X-ray scattering in the linear collimation mode (diffractometer SAXSess mc2, Anton Paar, Austria). The SEM images were processed using the program Digimizer. The photocatalytic activity of titanium dioxide films was studied by the spectrophotometric method during the oxidation reaction of the organic dye methylene blue.

Results. As a result of the study, it was found that with increasing time and temperature of thermal treatment, the dispersion and average grain size increase. In samples obtained at a temperature of 800 °C, a significant coarsening of the grain structure is observed with a simultaneous increase in the crystallinity of the samples. Thermal annealing leads to phase transformations in TiO2 nanofilms. At a temperature of 400°C, an anatase phase is formed, which, upon annealing at 600°C and 800°C, irreversibly transforms into the rutile phase. 

Conclusion. The TiO2 grain size and phase composition determine the physicochemical properties of annealed magnetron titanium dioxide films. Thermal annealing leads to changes in particle size distribution and phase transformations in the samples. The formation of nanofilms with a phase composition (Anatase/Rutile 70%/15%) with a low degree of crystallinity makes it possible to obtain nanofilms with the highest photocatalytic activity. An increase in the annealing temperature up 800°C leads to an increase in the crystallinity of the nanofilm and the transformation of the anatase phase into rutile, which reduces the photocatalytic activity of titanium dioxide nanofilms. 

About the Authors

A. S. Chekadanov
Southwest State University
Russian Federation

Alexander S. Chekadanov, Researcher of the Regional Center for Nanotechnology

50 Let Oktyabrya Str. 94, Kursk 305040



M. S. Pugachevskii
Southwest State University
Russian Federation

Maksim A. Pugachevskii, Dr. of Sci. (Physics and Mathematics), Associate Proffessor,  Director

50 Let Oktyabrya Str. 94, Kursk 305040



V. V. Rodionov
Southwest State University
Russian Federation

Vladimir V. Rodionov, Cand. of Sci. (Physics and Mathematics), Senior Researcher of the  Regional Center of Nanotechnology

50 Let Oktyabrya Str. 94, Kursk 305040



V. A. Mamontov
Southwest State University
Russian Federation

Vladimir A. Mamontov, Post-Graduate Student, the Department of Nanotechnology, General  and Applied Physics

50 Let Oktyabrya Str. 94, Kursk 305040



A. P. Kuzmenko
Southwest State University
Russian Federation

Alexander P. Kuzmenko, Dr. of Sci. (Physics and Mathematics), Professor, Chief Researcher  of the Regional Center for Nanotechnology

50 Let Oktyabrya Str. 94, Kursk 305040



A.  M. Storozhenko
Southwest State University
Russian Federation

Anastasia M. Storozhenko, Cand. of Sci.  (Physics and Mathematics), Senior Research  of the Regional Center of Nanotechnology

50 Let Oktyabrya Str. 94, Kursk 305040



Yu. A. Neruchev
Kursk State University
Russian Federation

Yuri A. Neruchev, Dr. of Sci. (Physics and Mathematics), Professor

33 Radishcheva Str., Kursk 305000



References

1. Imran Ali, Mohd Suhail, Zied A. Alothmanc, Abdulrahman Alwarthan. Recent advances in syntheses, properties and applications of TiO2 nanostructures. RSC Adv., 2018, vol. 8, рр. 30125. https://doi.org/10.1039/c8ra06517a

2. Pfaff G., Reynders P. Angle-dependent optical effects deriving from submicron structures of films and pigments. Chem. Rev., 1999, vol. 99, рр. 1963–1982. https://doi.org/10.1021/cr970075u

3. Salvador A., Pascual-Mart´ı M. C., Adell J. R., Requeni A., March J. G. Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen creams. J. Pharm. Biomed. Anal., 2000, vol. 22, рр. 301–306. https://doi.org/10.1016/S0731-7085(99)00286-1

4. Newman M. D., Stotland M., Ellis J. I. The safety of nanosized particles in titanium dioxide– and zinc oxide–based sunscreens. J. Am. Acad. Dermatol., 2009, vol. 61, рр. 685–692. https://doi.org/10.1016/j.jaad.2009.02.051

5. Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, vol. 238, рр. 37–38. https://doi.org/10.1038/238037a0

6. Kaida T., Kobayashi K., Adachi M., Suzuki F. Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics. J. Cosmet. Sci., 2004, vol. 55, рр. 219–220.

7. Wang J. J., Sanderson B. J. S., Wang H. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat. Res., Genet. Toxicol. Environ. Mutagen, 2007, vol. 628(2), рр. 99–106. https://doi.org/10.1016/j.mrgentox.2006.12.003

8. Jacobs J. J., Skipor A. K., Black J., Urban R. M., Galante J. O. Release and excretion of metal in patients who have a total hip-replacement component made of titanium-base alloy. J. Bone Jt. Surg. Am., 1991, vol. 73, рр. 1475–1486.

9. Sul Y. Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants. Int. J. Nanomed., 2010, vol. 5, рр. 87–100. https://doi.org/10.2147/IJN.S8012

10. Patri A., Umbreit T., Zheng J., Nagashima K., Goering P., Francke-Carroll S., Gordon E., Weaver J., Miller T., Sadrieh N., McNeil S., Stratmeyer M. Energy dispersive X-ray analysis of titanium dioxide nanoparticle distribution after intravenous and subcutaneous injection in mice. J. Appl. Toxicol., 2009, vol. 29, рр. 662–672. https://doi.org10.1002/jat.1454

11. Lee S.-Y., Park S.-J. TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem., 2013, vol. 19, рр. 1761–1769.

12. Yin Z. F., Wu L., Yang H. G., Su Y. H. Recent progress in biomedical applications of titanium dioxide. Phys. Chem. Chem. Phys., 2013, vol. 15, рр. 4844–4858.

13. Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, vol. 95, рр. 69–96.

14. Dulian P., Nachit W., Jaglarz J., Zieba P., Kanak J., Žukowski W. Photocatalytic methylene blue degradation on multilayer transparent TiO2 coatings. Opt. Mater., 2019, vol. 90, рр. 264–272. https://doi.org/10.1016/j.optmat.2019.02.041

15. Pavlenko M., Siuzdak K., Coy E., Jancelewicz M., Jurga S., Iatsunskyi I. Silicon/TiO2 coreshell nanopillar photoanodes for enhanced photoelectrochemical water oxidation. Int. J. Hydrog. Energy, 2017, vol. 42, рр. 30076–30085. https://doi.org/10.1016/j.ijhydene.2017. 10.033

16. Miyoshi A., Nishioka S., Maeda K. Water splitting on rutile TiO2‐based photocatalysts. Chem. Eur. J., 2018, vol. 24, рр. 1–17. https://doi.org/10.1002/chem.201800799

17. Fujishima A., Rao T. N., Tryk D. A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C, 2000, vol. 1, рр. 1-21. https://doi.org/10.1016/s1389-5567(00)00002-2

18. Khan S. U. M., Al-Shahry M., Ingler W. B. Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, vol. 297, рр. 2243–2245. https://doi.org/10.1126/science.1075035

19. Kalarivalappil V., Vijayan B. K., Kumar V. Engineering nanocrystalline titania thin films for high photocatalytic activity. Mater. Today Proc., 2019, vol. 9, рр. 621–626. https://doi.org/10.1016/j.matpr.2018.10.384.

20. Xin Xue, Xian Luo, Yongfu Long, Lu Zhang, Yue Yin and Benjun Xu Kinetic study on the effect of iron on the grain growth of rutile-type TiO2 under in situ conditions. Mater. Res. Express, 2022, vol. 9, рр. 055008.

21. Piltaver I. K., Peter R., Šarić I., Salamon K., I Badovinac. J., Koshmak K., Nannarone S., Marion I. D., Petravić M. Controlling the grain size of polycrystalline TiO2 films grown by atomic layer deposition. Applied Surface Science, 2017, vol. 419, рр. 564–572. http://dx.doi.org/10.1016/j.apsusc.2017.04.146

22. Badovinac I. J., Peter R., Omerzu A., Salamon K., Saric I., Samarzija A., Percic M., Piltaver I. K., Ambrozic G., Petravic M. Grain size effect on photocatalytic activity of TiO2 thin films grown by atomic layer deposition. Thin Solid Films, 2020, vol. 709, рр. 138215. https://doi.org/10.1016/j.tsf.2020.138215

23. Pugachevskii M. A., Mamontov V. A., Nikolaeva S. N., A Chekadanov. S., Emelyanov V. M. Vliyanie razmernogo faktora na strukturu i fiziko-khimicheskie svoistva nanochastits dioksida titana [Influence of the size factor on the structure and physical and chemical properties of titanium dioxide nanoparticles]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2021, vol. 11, рр. 104–118.

24. Tian G., Fu H., Jing L., Xin B., Pan K. Preparation and characterization of stable biphase TiO2 photocatalyst with high crystallinity, large surface area, and enhanced photoactivity. J. Phys. Chem. C., 2008, vol. 112, рр. 3083–3089. https://doi.org/10.1021/jp710283p

25. Xu N., Shi Z., Fan Y., Dong J., Shi J., Hu M. Z.-C. Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions. Ind. Eng. Chem. Res., 1999, vol. 38, рр. 373–379. https://doi.org/10.1021/ie980378u

26. Kelly S., Pollak F. H., Tomkiewicz M. Raman spectroscopy as a morphological probe for TiO2 aerogels. J. Phys. Chem. B, 1997, vol. 101, рр. 2730–2734. https://doi.org/10.1021/jp962747a

27. Nam H.-J., Amemiya T., Murabayashi M., Itoh K. Photocatalytic activity of sol−gel TiO2 thin films on various kinds of glass substrates: the effects of Na+ and primary particle size. J. Phys. Chem. B., 2004, vol. 108, рр. 8254–8259. https://doi.org/10.1021/jp037170t

28. Lee J.-H., Leu I.-C., Hsu M.-C., Chung Y.-W., Hon M.-H. J. Fabrication of aligned TiO2 onedimensional nanostructured arrays using a one-step templating solution approach. J. Phys. Chem. B, 2005, vol. 109, рр. 13056–13059.

29. Lee S., Noh J. H., Han H. S., Yim D. K., Kim D. H., Lee J.-K., Kim J. Y., Jung H. S., Hong K. S. Nb-Doped TiO2: A new compact layer material for TiO2 dye-sensitized solar cells. J. Phys. Chem. C, 2009, vol. 113, рр. 6878–6882.

30. Pugachevskii M. A. Formation of TiO2 nanoparticles by laser ablation and their properties. Nanoscience and Nanotechnology Letters, 2014, vol. 6, рр. 519–523.

31. Chambers S. A. Epitaxial growth and properties of thin film oxides. Surf. Sci. Rep., 2000, vol. 39, рр. 105–180.

32. Randeniya L. K., Bendavid A., Martin P. J., Preston E. W. Photoelectrochemical and structural properties of TiO2 and n-doped TiO2 thin films synthesized using pulsed direct current plasma-activated chemical vapor deposition. J. Phys. Chem. C, 2007, vol. 111, рр. 18334–18340.

33. Spagnol V., Cachet H., Baroux B., Sutter E. J. Influence of sub-band-gap states on light induced long-lasting super-hydrophilic behavior of TiO2. J. Phys. Chem. C, 2009, vol. 113, рр. 3793–3799.

34. Glatter O. Determination of particle-size distribution functions from small-angle scattering data by means of the indirect transformation method. J. Appl. Cryst., 1980, vol. 13, рр. 7–11. https://doi.org/10.1107/S0021889880011429

35. Chekadanov A. S., Pugachevskii M. A., Aung Hein K., Kuzmenko A. P., Storozhenko A. M. Effect of thermal annealing on grain size and phase changes in magnetron titanium oxide films. St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 2022, vol. 15, no. 3, pt. 1, рр. 149–154. https://doi.org/10.18721/JPM.153.125

36. Gupta S., Tripathi M. A review of TiO2 nanoparticles. Chinese Science Bulletin, 2011, vol. 56, no. 16, рр. 1639–1657. https://doi.org/10.1007/S11434-011-4476-1

37. Ohtani B., Prieto-Mahaney O. O., Li D., Abe R. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry Journal of Photochemistry and Photobiology A: Chemistry, 2010, vol. 216, рр. 179–182. https://doi.org/10.1016/j.jphotochem.2010.07.024


Review

For citations:


Chekadanov A.S., Pugachevskii M.S., Rodionov V.V., Mamontov V.A., Kuzmenko A.P., Storozhenko A.M., Neruchev Yu.A. Effect of Granulometric and Phase Transformations on the Photocatalytic Properties of Annealed Magnetron Titanium Dioxide Films. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(4):180-193. (In Russ.) https://doi.org/10.21869/2223-15282022-12-4-180-193

Views: 145


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)