Calculation of Interaction Forces Between Two Nonlinearly Magnetizable Particles
https://doi.org/10.21869/2223-1528-2022-12-4-168-179
Abstract
Purpose. Calculation of the magnetic interaction forces of a pair of nonlinearly magnetized particles arbitrarily located in a uniform external magnetic field. Description of differences in the calculation of interparticle forces using other models.
Methods. The magnetostatic problem for two spherical nonlinearly magnetized particles placed in a uniform magnetic field was transformed by iterative algorithm to a sequence of linear magnetostatic problems, which, in turn, were solved by the finite element method. The computer code that implements the specified algorithm is written in python using the esys.escript library. The obtained energy data were interpolated by splines. Numerical differentiation was used to calculate the forces.
Results. In results data of energy and forces arising between particles were obtained in a wide range of parameters characterizing the problem: the distance between the centers of the particles, the external field intensity, and the angle of the pair relative to the field. The conclusion about attraction between particles as the predominant type of interaction in MRE is confirmed. Compared to previous works, the contribution of the tangential component of the magnetic interaction forces has been significantly refined. The inability of the model of nonlinear interacting dipoles to give a correct estimate of the interaction forces in the considered range of fields for pair of particles located at an angle to the external magnetic field is revealed.
Conclusion. The concept of the magnitude and direction of forces acting between particles located at an angle to the applied magnetic field has been expanded. The necessity of an analytical formula that would describe the dependence of the energy of particles on all three parameters is substantiated: the distance between their centers, the external field, and the angle of rotation relative to this field.
Keywords
About the Authors
A. M. BillerRussian Federation
Anastasiia M. Biller, Cand. of Sci. (Physics and Mathematics), Junior Researcher
O. V. Stolbov
Russian Federation
Oleg V. Stolbov, Cand. of Sci. (Physics and Mathematics), Senior Researcher at the Laboratory of Disperse Systems Dynamics
References
1. De Vicente J., Yang J., Morillas J. R. Double-gap plate–plate magnetorheology. J. Rheol, 2018, vol. 62 (6), рр. 1485–1494. https://doi.org/10.1122/1.5052247
2. Segovia-Gutiérrez J. P., Berli C. L. A., de Vicente J. Nonlinear viscoelasticity and two-step yielding in magnetorheology: A colloidal gel approach to understand the effect of particle concentration. J. Rheol., 2012, vol. 56 (6), рр. 1429–1439. http://dx.doi.org/10.1122/1.4742186
3. Khokhryakova C. A., Kolesnichenko E. V. Volny na svobodnoi poverkhnosti mag-nitnoi zhidkosti na zhidkoi podlozhke, vozbuzhdaemye vertikal'nym peremennym magnitnym polem [Surface waves in a floating magnetic fluid layer under vertically oscillating magnetic field]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2022, vol. 12(2), рр. 96–110. https://doi.org/10.21869/2223-15282022-12-2-96-110
4. Han Y., Mohla A., Huang X., Hong W., Faidley L.E. Magnetostriction and field stiffening of magneto-active elastomers. International Journal of Applied Mechanics, 2015, vol. 7 (1), рр. 1550001. https://doi.org/10.1142/S1758825115400013
5. Elhajjara R., Lawa C.-T., Pegoretti A. Magnetostrictive polymer composites: Recent advances in materials, structures and properties. Progress in Materials Science, 2018, vol. 97, рр. 204–229. https://doi.org/10.1016/j.pmatsci.2018.02.005
6. Li Y., Li J., Li W., Du H. A state-of-the-art review on magnetorheological elastomer devices. Smart Materials and Systems, 2014, vol. 23 (12), рр. 123001. https://doi.org/10.1088/0964-1726/23/12/123001
7. Böse H., Rabindranath R., Ehrlich J. Soft magnetorheological elastomers as new actuators for valves. Journal of Intelligent Material Systems and Structures, 2012, vol. 23(9), рр. 989–994. https://doi.org/10.1177/1045389X11433498
8. Li R., Du C., Guo F., Yu G., Lin X. Performance of variable negative stiffness MRE vibration isolation system. Advances in Materials Science and Engineering, 2015, vol. 2015(3), рр. 837657. https://doi.org/10.1155/2015/837657
9. Melenev P. V., Rusakov V. V., Raikher Yu. L. Magnetic behavior of in-plane deformable dipole clusters. J. Magn. Magn. Mater., 2006, vol. 300 (1), рр. e187–e190. http://dx.doi.org/10.1016/j.jmmm.2005.10.076
10. Stolbov O. V., Raikher Yu. L., Balasoiu M. Modelling of magnetodipolar striction in soft magnetic elastomers. Soft Matter., 2011, vol. 7, рр. 8484–8487. http://dx.doi.org/10.1039/c–1sm05714f
11. Biller A. M., Stolbov O. V., Raikher Yu. L. Bistabil'noe magnitomekhanicheskoe povedenie ferromagnitnykh chastits v elastomernoi matritse [Bistable magnetomechanical behavior of ferromagnetic particles in an elastomer matrix]. Vychislitel'naya mekhanika sploshnykh sred = Computational Continuum Mechanics, 2014, vol. 8, no. 3, pp. 273–288. https://doi.org/10.7242/1999-6691/2015.8.3.23
12. Shkel Y. M., Klingenberg D. J. Magnetorheology and magnetostriction of isolated chains of nonlinear magnetizable spheres. J. Rheol., 2001, vol. 45(2), рр. 351–368. http://dx.doi.org/10.1122/1.1343878
13. Genç S., Phulé P. P. Rheological properties of magnetorheological fluids. Smart Mater. Struct., 2002, vol. 11 (1), рр. 140–156. http://dx.doi.org/10.1088/0964-1726/11/1/316
14. Peng X., Li H. Analysis of the magnetomechanical behavior of MRFs based on micromechanics incorporating a statistical approach. Smart Mater. Struct., 2007, vol. 16 (6), рр. 2477–2482. http://dx.doi.org/10.1088/0964-1726/16/6/051
15. Park B. J., Fang F. F., Choi H. J. Magnetorheology: materials and application. Soft Matter., 2010, vol. 6 (21), рр. 5246–5253. http://dx.doi.org/10.1039/c0sm00014k
16. Bozort R. Ferromagnetizm [Ferromagnetism]. Moscow, Inostr. Lit. Publ., 1956. 784 р.
17. Lee C. H., Reitich F., Jolly M. R., Banks H. T., Ito K. Piecewise linear model for field-responsive fluids. IEEE T. Magn., 2001, vol. 37 (1), рр. 558–560. http://dx.doi.org/10.1109/20.914377
18. Bossis G., Khuzir P., Lacis S., Volkova O. Yield behavior of magnetorheological suspensions. J. Magn. Magn. Mater., 2003, vol. 258–259, рр. 456–458. http://dx.doi.org/10.1016/S0304-8853(02)01096-X
19. Biller A. M., Stolbov O. V., Raikher Yu. L. Silovoe vzaimodeistvie namagnichivayushchikhsya chastits, pomeshchennykh v elastomer [The forces between magnetizable particles embedded in an elastomer]. Vychislitel'naya mekhanika sploshnykh sred = Computational Continuum Mechanics, 2014, vol. 7, no. 1, pp. 61–72. http://dx.doi.org/10.7242/1999-6691/2014.7.1.7
20. Biller A. M., Stolbov O. V., Raikher Yu. L. Dipolar models of ferromagnet particles interaction in magnetorheological composites. J. Optoelectron. Adv. M., 2015, vol. 17 (7–8), рр. 1106–1113.
Review
For citations:
Biller A.M., Stolbov O.V. Calculation of Interaction Forces Between Two Nonlinearly Magnetizable Particles. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(4):168-179. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-4-168-179