Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

On the diffusive model of C60 fullerene clusterization in liquids

https://doi.org/10.21869/2223-1528-2024-14-2-156-167

Abstract

   Purpose of research. The purpose of the study is to explain the mechanisms of clustering of fullerene molecules in liquid media observed using various structural nuclear -physical methods, as well as the interpretation of experimental data within the framework of a microscopic diffusion model.

   Methods. The article gives a brief overview of the results of positron annihilation spectroscopy, small-angle neutron scattering, translucent electron microscopy, with which the geometric parameters of fullerene clusters in solutions were established. The theoretical method of research is the microscopic diffusion model “Limited diffusion aggregation”, which describes the kinetic processes of clusterization.

   Results. The diffusion limited aggregation model displays adequately the mechanism of formation of C60 molecules in the form of fractal units in the volume of fluid, observed in experiments on positron annihilation spectroscopy and small-angle neutron scattering. The structural indicators of aggregate fullerene particles in carbon disulfide, o-Xylene, toluene, water and other solvents are analyzed. The properties of various diffusion models (the reaction limited aggregation model and the diffusion limited aggregation model) are considered and their combination in relation to the assessments
of the kinetics of fullerene aggregation in solutions. A quantitative comparison of the results of the discussed models was carried out using the example of carbon disulfide.

   Conclusion. The diffusion microscopic models adequately describe the phenomenon of fullerene aggregation in polar and non-polar solvents, which are recorded by various nuclear methods (positron annihilating spectroscopy and small-angle neutron scattering), the most reliable is the diffusion limited aggregation model, more than that, it is the basis of a numerical definition of structural structures parameters of units. Compared to neutron scattering, with the annihilation of positrons, in the aggregation of fullerene the [Ps–C60] molecular complexes participate in the clusterization, but this does not affect the change in the size of the cluster and the reliability of the results.

About the Authors

L. V. Elnikova
NRC-Kurchatov institute; Southwest State University
Russian Federation

Liliia V. Elnikova, Candidate of Sciences (Physics and Mathematics), Scientific Researcher, Senior researcher

Regional Center of Nanotechnology

117218; 25 Bolshaya Cheremushkinskaya Str.; Moscow; 305040; 50 Let Oktyabrya Str. 94; Kursk



V. G. Shevchenko
N. S. Enikolopov Institute of Synthetic and Polymer Materials of Russian Academy of Sciences
Russian Federation

Vitaliy G. Shevchenko, Doctor of Sciences (Chemistry), Professor, Leading Researcher

117393; 70/2 Profsoyuznaya Str.; Moscow



A. P. Kuzmenko
Southwest State University
Russian Federation

Aleksander P. Kuzmenko, Doctor of Sciences (Physics and Mathematics), Professor, Chief Researcher

Regional Center of Nanotechnology

305040; 50 Let Oktyabrya Str. 94; Kursk



References

1. Grebinyk A., Prylutska S., Buchelnikov A., Tverdokhleb N., Grebinyk S., Evstigneev M., Matyshevska O., Cherepanov V., Prylutskyy Yu., Yashchuk V., Naumovets A., Ritter U., Dandekar Th., Frohme M. C<sub>60</sub> fullerene as an effective nanoplatform of alkaloid berberine delivery into leukemic cells. Pharmaceutics. 2019;11:586-1–586-23. doi: 10.3390/pharmaceutics11110586

2. Mchedlov-Petrossyan N.O. Fullerenes in liquid media: an unsettling intrusion into the solution chemistry. Chem. Rev. 2013;113:5149–5193. doi: 10.1021/cr3005026

3. Mchedlov-Petrossyan N.O. Fullerenes in molecular liquids. Solutions in “good” solvents: Another view. Journal of Molecular Liquids. 2011;161:1–12. doi: 10.1016/j.molliq.2011.04.001

4. Bokare A.D., Patnaik A. Evidence for C<sub>60</sub> aggregation from solvent effects in [Ps–C<sub>60</sub>] molecular complex formation. Carbon. 2003;41:2643–2651. doi: 10.1016/S0008-6223(03)00384-1

5. Bokare A.D., Patnaik A. Microscopic diffusion model applied to C<sub>60</sub> fullerene fractals in carbon disulphide solution. J. Chem. Phys. 2003;119:4529–4538. doi: 10.1063/1.1594177

6. Bokare A.D., Patnaik A. C60 Aggregate structure and geometry in nonpolar o-Xylene. J. Phys. Chem. B. 2005;109:87–92. doi: 10.1021/jp047033b

7. Avdeev M.V., Khokhryakov A.A., Tropin T.V., Andrievsky G.V., Klochkov V.K., Derevyanchenko L.I., Rosta L., Garamus V.M., Priezzhev V.B., Korobov M.V., Aksenov V.L. Molecular-colloidal solutions of C<sub>60</sub> fullerenes in water by small-angle neutron scattering. Langmuir. 2004;20:4363–4368. doi: 10.1021/la0361969

8. Elnikova L.V., Ozerin A.N., Shevchenko V.G., Nedorezova P.M., Ponomarenko A.T., Skoi V.V., Kuklin A.I. Spatial structure and aggregation of carbon allotrope nanofillers in isotactic polypropylene composites by small-angle neutron scattering. Fullerenes Nanotubes and Carbon Nanostructures. 2021;29(10):783–792. doi: 10.1080/1536383X.2021.1896496

9. Grafutin V.I., Prokop'ev E.P. Positron annihilation spectroscopy in materials structure studies. Physics-Uspekhi. 2002;45(1):59–74. doi: 10.1070/PU2002v045n01ABEH000971

10. Grafutin V.I., El'nikova L.V., Ilyukhina O.V., Myasischeva G.G., Prokopiev E.P., Funtikov Yu.V. Study of structure of simple fluids with positron annihilation spectroscopy. Khimiya vysokikh energii = High energy chemistry. 2013;47(4):156–161. (In Russ.) URL: https://naukarus.com/izuchenie-struktury-ryada-zhidkih-molekulyarnyh-sred-metodami-pozitronnoy-spektroskopii

11. Lightbody D., Sherwood H.N. Temperature and phase dependence of positron lifetimes in solid cyclohexan. Chem. Phys. 1985;93:475–484.

12. Tao S.J. Positronium annihilation in molecular substances. J. Chem. Phys. 1972;56:5499–5510. doi: 10.1063/1.1677067

13. Eldrup M., Lightbody D., Sherwood J.N. The temperature dependence of positron lifetimes in solid pivalic acid. J. Chem. Phys. 1981;63:51–58. doi: 10.1016/0301-0104(81)80307-2

14. Deng Q., Jean Y.C. Free volume distribution of an epoxy polymer probed by positron annihilation by positron annihilation spectroscopy: pressure dependence. Macromolecules. 1993;26(1):30–34. doi: 10.1021/ma00053a005

15. Török Gy., Lebedev V.T., Cser L. Small-angle neutron-scattering study of anomalous C<sub>60</sub> clusterization in Toluene. Physics of the Solid State. 2002;44(3):572–573.

16. Tropin T.V., Aksenov V.L, Schmelzer J.W.P Kinetic processes in fullerene solutions. Physics of Particles and Nuclei. 2021;52(2):315–329. doi: 10.1134/S1063779621020076

17. Witten T.A., Sander L.M. Diffusion-limited aggregation, a kinetic critical phenomenon. Physical Review Letters. 1981;47(19):1400–1403. doi: 10.1103/PhysRevLett.47.1400

18. Kyzyma E.A., Tomchuk A.A., Bulavin L.A., Petrenko V.I., Almasy L., Korobov M.V., Volkov D.S., Miheev I.V., Koshlan I.V., Koshlan N.A., Blaha P., Aksenov V.L. Structure and toxicity of aqueous fullerene solutions. Poverkhnost'. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya = X-ray, Synchrotron and Neutron Techniques. 2015;9:1–5. (In Russ.) doi: 10.1134/S1027451015010127

19. Vass Sz. Microscopic diffusion model for calculating orthopositronium lifetimes in micellar solutions. J. Phys. Chem. 1986;90:1099–1106.

20. Shpak A.P., Shilov V.V., Shilova O.A., Kunitsky Yu.A. Diagnostics of nanosystems. Multi-level fractal structures. Part II. Kiev: Akademperiodica; 2004. 112 p.

21. Aksenov V.L., Avdeev M.V., Tropin T.V., Priezzhev V.B., Schmelzer J.W.P. Model description of aggregation in fullerene solutions. AIP Conf. Proc. 2005;786:37–40. doi: 10.1063/1.2103816


Review

For citations:


Elnikova L.V., Shevchenko V.G., Kuzmenko A.P. On the diffusive model of C60 fullerene clusterization in liquids. Proceedings of the Southwest State University. Series: Engineering and Technology. 2024;14(2):156-167. (In Russ.) https://doi.org/10.21869/2223-1528-2024-14-2-156-167

Views: 235


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)