Magnetron carbon structures obtained by high-frequency magnetron sputtering in Argon and Nitrogen
https://doi.org/10.21869/2223-1528-2024-14-2-71-87
Abstract
Purpose of research. Creation and characterization of carbon nanostructures by high-frequency magnetron sputtering from a carbon target in argon on a silicon substrate and in a reactive nitrogen environment, obtained on a Ni catalyst buffer layer.
Methods. High-frequency magnetron sputtering on a silicon substrate with changes in control parameters: sputtering time power and working gas pressure Ar and N. Research was carried out using X-ray phase analysis, atomic force microscopy and holographic microscopy, Raman scattering.
Results. The formation of carbon nanotubes, including single-walled ones, was confirmed by the method of Raman scattering of light along the lines ID 1363 and IG 1564 cm-1, as well as ωRDМ 308 and 227 cm–1. Using atomic force microscopic images, the fractal dimension of the nanofilms was calculated, which indicated their 3D nature. Based on X-ray phase analysis of magnetron nanofilms, the dimensions of the coherence region, texture, microdeformations and interplanar deformation distortions were determined.
Conclusion. In carbon magnetron nanofilms, deformations of both signs occur: both compressive (∆a < 0) and tensile (∆a > 0). Carbon magnetron nanofilms are represented, among other things, by single-walled carbon nanotubes, the chirality of which in an argon environment is (6, 6), and in a reactive mixture of nitrogen and argon on a Ni buffer layer (7, 7). It was discovered that in high-frequency magnetron mode, silicon carbide is formed in both inert and reactive environments.
Keywords
About the Authors
A. P. KuzmenkoRussian Federation
Aleksander P. Kuzmenko, Doctor of Science (Physics and Mathematics), Professor, Chief Researcher
Regional Center of Nanotechnology
305040; 50 Let Oktyabrya Str.; Kursk
A. I. Kolpakov
Russian Federation
Artem I. Kolpakov, Post-Graduate Student
305040; 50 Let Oktyabrya Str.; Kursk
A. S. Sizov
Russian Federation
Aleksander S. Sizov, Doctor of Sciences (Engineering), Professor
Department of Information Systems and Technologies
305040; 50 Let Oktyabrya Str.; Kursk
V. M. Emelyanov
Russian Federation
Viktor M. Emelyanov, Doctor of Sciences (Engineering), Professor, Chief Researcher
Department of Design and Fashion Industry
305040; 50 Let Oktyabrya Str.; Kursk
Yu. A. Neruchev
Russian Federation
Yury A. Neruchev, Doctor of Sciences (Physics and Mathematics), Professor, Scientific Supervisor of the Center
Department of Physics and Nanotechnology; Research Center for Condensed Matter Physics
305000; 33 Radishcheva Str.; Kursk
References
1. Kulbachinsky V.A. Nanostructuring and creation of nanocomposites is a promising direction for increasing the efficiency of thermoelectrics. Russian nanotechnologies. 2019;14(7-8):30–42. doi: 10.21517/1992-7223-2019-7-8-30-42
2. Shi X.L., Zou J., Chen Z.G. Advanced thermoelectric design: from materials and structures to devices. Chemical reviews. 2020;120(15):7399–7515. doi: 10.1021/acs.chemrev.0c00026
3. Eidelman E.D. Thermoelectric effect and thermoelectric generator based on carbon nanostructures: achievements and prospects. Uspekhi fizicheskikh nauk = Physics-Uspekhi. 2021;191(6):561–585. (In Russ.) doi: 10.3367/UFNe.2020.06.038795
4. Tretyakov A.A., Kapralova V.M., Loboda V.V., Sapurina I.Yu., Sudar' N.T. The influence of temperature on the thermoelectric effect in a composite material based on carbon nanotubes and polyaniline. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Fiziko-matematicheskie nauki = Scientific and Technical Bulletins of the St. Petersburg State Polytechnic University. Physical and Mathematical Sciences. 2022;15(3):143–53. (In Russ.) doi: 10.18721/JPM.15311
5. Hung N.T., Nugraha A.R.T., Saito R. Thermoelectric properties of carbon nanotubes. Energies. 2019;12(23):4561. doi: 10.3390/en12234561
6. Trawinski B., Bochentyn B., Gostkowska N., Lapinski M., Miruszewski T., Kusz B. Structure and thermoelectric properties of bismuth telluride – Carbon conposites. Materials Research Bulletin. 2018;99:10–17. doi: 10.1016/j.materresbull.2017.10.043
7. Ivanov O.N., Yapryntsev M.N., Vasil’ev A.E., Zhezhu M.V., Khovaylo V.V. Metal-ceramic composite Bi2Te3-Gd: thermoelectric properties. Glass and Ceramics. 2022;79(5-6):180–184. doi: 10.1007/s10717-022-00480-7
8. Elsehly E. M., El-Khouly A., Mohamed Asran Hassan, Novickij A. P., Karpenkov D. Yu., Pashkova D. S., et al. Effect of carbon nanotubes on the thermoelectric properties of p- and n-type Heusler alloys. Fizika i tekhnika poluprovodnikov = Physics and technology of semiconductors. 2022;56(2):164–168. (In Russ.) doi: 10.21883/FTP.2022.02.51955.28
9. Kalinin Y.E., Makagonov V.A., Sitnikov A.V. Thermoelectric properties of thin film composites. Fizika tverdogo tela = Solid state physics. 2015;57(10):1904–1912. (In Russ.)
10. Kuzmenko A. P., Abakumov P. V., Kolpakov A. I., Kuz'ko A. E., Lukashov V. E., M'o M.T., et al. Nanostructured features and properties of Ni + NiCr magnetron film thermocouple. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies. 2018;8(2):147–156. (In Russ.)
11. Aleksanyan M., Sayunts A., Shahkhatuni G., Simonyan Z., Kasparyan H., Kopecký D. Growth, characterization, and application of vertically aligned carbon nanotubes using the RF-magnetron sputtering method. ACS omega. 2023;8(23):20949–20958. doi: 10.1021/acsomega.3c01705
12. Addie A. J., Ismail R. A., Mohammed M. A. Amorphous carbon nitride dual-function anti-reflection coating for crystalline silicon solar cells. Scientific Reports. 2022;12(1):9902. doi: 10.1038/s41598-022-14078-0
13. Kuzmenko A.P., Thant Sin Win, Myo Min Tan, Naw Dint. Magnetron single- and multilayer nanofilms of Nb, C and Si. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies. 2019;9(4):30–52. (In Russ.)
14. Dresselhaus M.S., Jorio A., Souza Filho A.G., Saito R. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philosophical transactions of the royal society A: Mathematical, physical and engineering sciences. 2010;368(1932):5355–5377. doi: 10.1098/rsta.2010.0213
15. Kuzmenko A.P., Thet Pyo Naing, Kuzko A.E., Myo Min Tan. The influence of electric fields on self-organization processes in an ultrafine solution of multi-walled carbon nanotubes. Zhurnal tekhnicheskoj fiziki = Journal of Technical Physics. 2020;90(2):268–277. (In Russ.) doi: 10.21883/JTF.2020.02.48821.2009
16. Guillen C., Herrero J. Influence of acceptor defects on the structural, optical and electrical properties of sputtered NiO thin films. Physica status solidi (a). 2021;218(16):2100237. doi: 10.1002/pssa.202100237
17. Maultzsch J., Telg H., Reich S., Thomsen C. Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment. Physical Review B. 2005;72(20):205438. doi: 10.1103/PhysRevB.72.205438
18. Bousige C., Stolz A., Silva-Santos S.D., Jingming Shi, Marques M., Flahaut E., Monthioux M., San-Miguel A. Superior carbon nanotube stability by molecular filling: a single-chirality study at extreme pressures. Carbon. 2021;183:884–892. doi: 10.1016/j.carbon.2021.07.068
19. Puech P., Kandara M., Paredes G., Moulin L., Weiss-Hortala E., Anirban Kundu, N. Ratel, Plewa, Pellenq, M. Monthioux. Analyzing the Raman spectra of graphenic carbon materials from kerogens to nanotubes: what type of information can be extracted from defect bands? Journal of Carbon Research. 2019;5(4):69. doi: 10.3390/c5040069
20. Kolpakov A.I., Kuzmenko A.P. Characterization of carbon nanofilms by high-frequency magnetron sputtering. In: Fizika i tekhnologiya perspektivnyh materialov – 2023 : sbornik trudov Mezhdunarodnoj konferencii = Physics and technology of advanced materials – 2023 : collection of proceedings of the International Conference. Ufa: Ufimskii un-t nauki i tekhnologii; 2023. P. 172–174. (In Russ.)
21. Sami Ullah Rather. Trimetallic catalyst synthesized multi-walled carbon nanotubes and their application for hydrogen storage. Korean Journal of Chemical Engineering. 2016;33:1551–1556. doi: 10.1007/s11814-015-0271-z
22. Baoxing Sun, Ruobing Xie, Cun Yu, Cheng Li, Hongjie Xu. Structural characterization of SiC nanoparticles. Journal of Semiconductors. 2017;38(10):103002. URL: https://www.researchgate.net/publication/320847347_Structural_characterization_of_SiC_nanoparticles
23. Li Yang, Yuan Chen, Zhenzhen Xu, Natuski Toshiaki, Yusong Xi, Qingqing Ni. Effect of heat treatment on mechanical property of amorphous carbon films by magnetron sputtering. Diamond and Related Materials. 2022;129:109328. doi: 10.1016/j.diamond.2022.109328
24. Sidorov A.I., Leks E.Y., Podsvirov O.A., Vinogradov A.Y. Crystallization and silicon carbide formation in two-layer amorphous silicon–carbon films during electron irradiation. Zhurnal tekhnicheskoj fiziki = Journal of Technical Physics. 2022;92(11):1705–1710. (In Russ.) doi: 10.21883/JTF.2022.11.53444.180-22
25. Warren B. E. X-Ray diffraction in random layer lattices. Physical review. 1941;59:693–698. doi: 10.1103/PhysRev.59.693
26. Sudhansu Patro, Kuldeep Kumar Saxena, Ajit Behera. Effect of annealing temperature and thickness of magnetron sputtered Ni/Ti film on its microstructure and nanoindentation behavior. Metal Science and Heat Treatment. 2023;65(3-4):167–172. doi: 10.1007/s11041-023-00909-y
Review
For citations:
Kuzmenko A.P., Kolpakov A.I., Sizov A.S., Emelyanov V.M., Neruchev Yu.A. Magnetron carbon structures obtained by high-frequency magnetron sputtering in Argon and Nitrogen. Proceedings of the Southwest State University. Series: Engineering and Technology. 2024;14(2):71-87. (In Russ.) https://doi.org/10.21869/2223-1528-2024-14-2-71-87