Structural and Morphological Features of HfN Magnetron Nanofilms with Varying Thickness
https://doi.org/10.21869/2223-1528-2022-12-4-110-123
Abstract
Purpose. Nanostructuring in hafnium nitride magnetron nanofilms with varying thickness.
Methods. Magnetron HfN nanofilms were deposited on silicon substrates in the direct current mode in an MVU TMMagna T facility (NIITM, Zelenograd). Obtaining nanofilms with a given thickness was achieved by varying the sputtering time in the range from 60 to 900 s. Nanoscale characterization of HfN nanofilms was carried out by atomic force microscopy and X-ray phase analysis. The fractal dimension was determined by the cube counting method.
Results. It was established that the growth of the HfN nanofilm proceeded according to the Volmer-Weber mechanism, the granulometric size distribution of nanoclusters in the HfN nanofilms was close to normal. Based on atomic force microscopic images of the nanofilm surface, both their average and root-mean-square roughnesses were calculated. According to the data of X-ray phase analysis in accordance with the Debye-Scherrer-Selikhov and Wolfe-Bragg formulas, the dimensions of the coherence region and the relative deformations of the crystal lattice are calculated, respectively.
Conclusion. Depending on the sputtering time, the coherent scattering regions L(t) changed nonlinearly, which indicated a structural transition with a characteristic change in the nanofilm surface morphology. The calculated values of the dependence of deformation changes – a(t) had an alternating form, that is, the process of formation of HfN nanofilms at the initial stage was accompanied by compression and then by tension. The time dependence of the fractal dimension Df(t) always exceeded 2, which indicated that the nanofilms are three-dimensional. In this case, the dependence Df(t) reached Dfmax at ≈480 s. The alternating form of changes in dL/dt and da/dt and the existence of Dfmax at the corresponding sputtering times indicated the dominant growth of HfN nanofilms according to the Volmer-Weber mechanism with the formation of columnar structures.
Keywords
About the Authors
A. P. KuzmenkoRussian Federation
Alexander P. Kuzmenko, Dr. of Sci. (Physics and Mathematics), Professor, Chief Researcher of the Regional Center for Nanotechnology
50 Let Oktyabrya Str. 94, Kursk 305040
E. O. Gusev
Russian Federation
Evgeny O. Gusev, Post-Graduate Student of the Department of Nanotechnology, Microelectronics, General and Applied Physics
50 Let Oktyabrya Str. 94, Kursk 305040
V. V. Rodionov
Russian Federation
Vladimir V. Rodionov, Cand. of Sci. (Physics and Mathematics), Senior Researcher of the Regional Center of Nanotechnology
50 Let Oktyabrya Str. 94, Kursk 305040
A. S. Sizov
Russian Federation
Aleksander S. Sizov, Dr. of Sci. (Physics and Mathematics), Professor
50 Let Oktyabrya Str. 94, Kursk 305040
Yu. A. Mirgorod
Russian Federation
Yuri A. Mirgorod, Dr. of Sci. (Chemistry), Leading Researcher Regional Center for Nanotechnology
50 Let Oktyabrya Str. 94, Kursk 305040
Myo Min Than
Myanmar
Myo Min Than, Dr. of Sci. (Physics and Mathematics), Professor
Pyin Oo Lwin
References
1. Pierson H. O. Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing, and Applications. Westwood, Noyes Publications, 1996. 362 p.
2. White M. A. Physical Properties of Materials. 3rd ed. Boca Raton, CRC Press, 2018. 518 p. https://doi.org/10.1201/978042946826
3. Wittmer M. Properties and microelectronic applications of thin films of refractory metal nitrides. Journal of Vacuum Science & Technology A, 1985, vol. 3, no. 1, рр. 1797. https://doi.org/10.1116/1.573382
4. Chen Y., Laha T., Balani K., Agarwal A. Nanomechanical properties of hafnium nitride coating. Scripta Materialia, 2008, vol. 58, no. 12, рр. 1121–1124. https://doi.org/10.1016/ j.scriptamat.2008.02.012
5. Thorsteinsson D. O., Gudmundsson J. T. Growth of HfN thin films by reactive high power impulse magnetron sputtering. AIP Advances, 2018, vol. 8, no. 3, рр. 035124. https://doi.org/10.1063/1.5025553
6. Escobar C. A., Caicedo J. C., Aperador W. Corrosion resistant surface for vanadium nitride and hafnium nitride layers as function of grain size. Journal of Physics and Chemistry of Solids, 2014, vol. 75, no. 1, рр. 23–30. https://doi.org/10.1016/j.jpcs.2013.07.024
7. González L. G., Torres J. H., Peredo L. Z., Serrano A. A. R., Vázquez C. S. L., Arias A. M. C., Ramírez N. F. Effect of substrate temperature on the properties of hafnium nitride films prepared by dc sputtering. Advanced Materials Research, 2014, vol. 976, рр. 124–128. https://doi.org/10.4028/www.scientific.net/AMR.976.124
8. Tillmann W., Dias N. F. L., Stangier D., Tolan M., Paulus M. Structure and mechanical properties of hafnium nitride films deposited by direct current, mid-frequency, and high-power impulse magnetron sputtering. Thin Solid Film, 2019, vol. 669, no. 1, рр. 65–71. https://doi.org/10.1016/j.tsf.2018.10.035
9. Chun S.-Y. Characteristics of HfN coatings by inductively coupled plasma-assisted magnetron sputtering. Journal of the Korean Ceramic Society, 2020, vol. 58, no. 2, рр. 178–183. https://doi.org/10.1007/s43207-020-00084-3
10. Yamanaka S., Hotehama K., Kawaji H. Superconductivity at 25.5 K in electron-doped layered hafnium nitride. Nature, 1998, vol. 392, no. 6676, рр. 580–582. https://doi.org/10.1038/33362
11. Li Y., Xia J. Cubic hafnium nitride: a novel topological semimetal hosting a 0-dimensional (0-D) nodal point and a 1-D topological nodal ring. Frontiers in Chemistry, 2020, vol. 8, рр. 727. https://doi.org/10.3389/fchem.2020.00727
12. Gotoh Y., Fujiwara S., Tsuji H. Work functions of hafnium nitride thin films as emitter material for field emitter arrays. Journal of Vacuum Science & Technology A, 2016, vol. 34, no. 3, рр. 031401. https://doi.org/10.1116/1.4945991
13. Sucheewa N., Wongwiriyapan W., Klamchuen A., Obata M., Fujishige M., Lertvanithphol T., Wutikhun T., Kullyakool S., Auttasiri W., Sowasod N., Prataen T., Tanthapanichakoon W., Nukeaw J. Tailoring properties of hafnium nitride thin film via reactive gas-timing RF magnetron sputtering for surface enhanced-Raman scattering substrates. Crystals, 2022, vol. 12, no. 1, рр. 78. https://doi.org/10.3390/cryst12010078
14. Kura C., Fujimoto S., Kunisada Y., Kowalski D., Tsuji E., C. Zhu, Habazaki H., Aoki Y. Enhanced hydrogen permeability of hafnium nitride nanocrystalline membranes by interfacial hydride conductio. Journal of Materials Chemistry A, 2018, vol. 6, no. 6, pр. 2730–2741. https://doi.org/10.1039/c7ta10253d
15. Dzhumaliev A. S., Nikulin Yu. V., Filimonov Yu. A. Formirovanie teksturirovannyh plyonok Ni(200) i Ni(111) metodom magnetronnogo raspyleniya [Formation of textured Ni(200) and Ni(111) films by magnetron sputtering method]. Zhurnal Tekhnicheskoi Fiziki = Journal of Technical Physics, 2016, vol. 6, no. 86, рр. 126–131.
16. Kuzmenko A. P., Thant Sin Win, Myo Min Than, Naw Dint. Magnetronnye odno- i mul'tislojnye nanoplyonki iz Nb, C i Si [Magnetron Single- and Multilayer Nb, C, and Si Nanofilms]. Izvestiya YugoZapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2019, vol. 9, no 4, рр. 30–52.
17. Douketis C., Wang Z., Haslett T. L., Moskovits M. Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy. Physical Review B, 1995, vol. 51, no. 16, рр. 11022. https://doi.org/10.1103/PhysRevB.51.11022
18. Zahn W., Zösch A. The dependence of fractal dimension on measuring conditions of scanning probe microscopy. Fresenius’ Journal of Analytical Chemistry, 1999, vol. 365, no. 1–3, рр. 168–172. https://doi.org/10.1007/s002160050360
19. Kuzmenko A. P., Kuzko A. E., Naw Dint, Myo Min Than, Kanukov R. T. Processy degradacii pri nagrevanii na vozduhe v magnetronnyh nanoplyonkah Ni i Cr [Degradation processes of Ni and Cr magnetron nanocoating under heating in air]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2016, vol. 2, no. 19, рр. 153–165.
20. Zhanga D., Qib Z., Weia B., Shena H., Wang Z. Microstructure and corrosion behaviors of conductive Hf/HfN multilayer coatings on magnesium alloys. Ceramics International. 2018, vol. 44, no. 8, рр. 9958–9966. https://doi.org/10.1016/j.ceramint.2018.03.027
21. Tillmann W., Dias N. F. L., Stangier D., Tolan M., Paulus M. Structure and mechanical properties of hafnium nitride films deposited by direct current, mid-frequency, and high-power impulse magnetron sputtering. Thin Solid Films, 2019, vol. 669, no. 1, рр. 65–71. https://doi.org/10.1016/j.tsf.2018.10.035
Review
For citations:
Kuzmenko A.P., Gusev E.O., Rodionov V.V., Sizov A.S., Mirgorod Yu.A., Than M. Structural and Morphological Features of HfN Magnetron Nanofilms with Varying Thickness. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(4):110-123. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-4-110-123