Simulation of the Pseudoplasticity Effect in a Magnetoactive Elastomer under Compression and Tension
https://doi.org/10.21869/2223-1528-2022-12-4-100-109
Abstract
Purpose. Construction of a mathematical model of the behavior of a мagnetoactive elastomer (MAE), which takes into account magnetic and elastic interactions between filler particles and allows describing the effect of pseudoplasticity under compression and tension in an external magnetic field. Development of a software that implements this model. Methods. When solving an elastic problem in the framework of the theory of small deformations, the esys/escript library was used (this is a tool for implementing mathematical models in Python using the finite element method). To describe the MAE, the total energy is written, consisting of elastic and magnetic parts. To minimize it, taking into account the constraints in the form of non-penetration of particles, nonlinear programming algorithms from the libraries JuMP (this is a domain-specific modeling language for mathematical optimization built into the Julia language) and Ipopt - Interior Point Optimizer - is an open source software package for large-scale nonlinear optimization.
Results. A mathematical model of the behavior of a мagnetoactive elastomer is constructed, which takes into account magnetic and elastic interactions between filler particles, which makes it possible to describe the effect of pseudoplasticity (magnetic shape memory effect) during compression and tension in an external magnetic field. A software has been developed that implements this mathematical model. Loading curves in a magnetic field under compression and tension of a MAE sample are obtained.
Conclusion. From the results of the numerical calculation, it can be seen that the yield stress and residual strain in the MAE sample under compression and tension have significant differences. An explanation of the mechanisms responsible for pseudoplasticity when the sign of the load changes is proposed. The results obtained can be used to develop a phenomenological model of the MAE behavior with a structural parameter.
About the Author
O. V. StolbovRussian Federation
Oleg V. Stolbov, Cand. of Sci. (Physics and Mathematics), Senior Researcher at the Laboratory of Disperse Systems Dynamics
1 Academika Koroleva Str., Perm 614018
References
1. Cantera M. A., Behrooz M., Gibson R. F., Gordaninejad F. Modeling of magneto-mechanical response of magnetorheological elastomers (MRE) and MRE-based systems: a review. Smart Mater. Struct., 2017, vol. 26, рр. 023001. https://doi.org/10.1088/1361-665X/aa549c
2. Bastola A. K., Paudel M., Li L., Li W. Recent progress of magnetorheological elastomers: a review. Smart Mater. Struct., 2020, vol. 29, рр. 123002. https://doi.org/10.1088/1361-665X/abbc77
3. Bastola A. K., Hossain M. A review on magneto-mechanical characterizations of magnetorheological elastomers. Composites Part B: Eng., 2020, vol. 200, рр. 108348. https://doi.org/10.1016/j.compositesb.2020.108348
4. Borin D., Stepanov G., Musikhin A., Zubarev A., Bakhtiiarov A., Storozhenko P. Magnetorheological Effect of Magnetoactive Elastomer with a Permalloy Filler. Polymers, 2020, vol. 12, рр. 2371. https://doi.org/10.3390/polym12102371
5. Kalita V. M., Dzhezherya Y. I., Cherepov S. V., Skirta Y. B., Bodnaruk A. V., Levchenko G. G. Critical bending and shape memory effect in magnetoactive elastomers. Smart Mater. Struct., 2020, vol. 30, рр. 025020. https://doi.org/10.1088/1361-665X/abd58c
6. Dohmen E., Kraus B. Coupled anisotropic magneto-mechanical material model for structured magnetoactive materials. Polymers, 2020, vol. 12, рр. 2710. https://doi.org/10.3390/polym12112710
7. Akbari E., Khajehsaeid H. A continuum magneto-mechanical model for magnetorheological elastomers. Smart Mater. Struct., 2020, vol. 30, рр. 015008. https://doi.org/10.1088/1361-665X/abc72f
8. Snarskii A. A., Shamonin M., Yuskevich P. Effect of magnetic-field-induced restructuring on the elastic properties of magnetoactive elastomers. J. Magn. Magn. Mater., 2021, vol. 517, рр. 167392. https://doi.org/10.1016/j.jmmm.2020.167392
9. Romeis D., Kostrov S. A., Kramarenko E. Y., Stepanov G. V., Shamonin M., Saphiannikova M. Magnetic-field-induced stress in confined magnetoactive elastomers. Soft Matter., 2020, vol. 16, рр. 9047– 9058. https://doi.org/10.1039/D0SM01337D
10. Metsch P., Romeis D., Kalina K. A., Raßloff A., Saphiannikova M., Kästner M. Magneto-mechanical coupling in magneto-active elastomers. Materials, 2021, vol. 14, рр. 434. https://doi.org/10.3390/ma14020434
11. Stepanov G. V., Abramchuk S. S., Grishin D. A., Nikitin L. V., Kramarenko E. Yu., Khokhlov A. R. Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers. Polymer, 2007, vol. 48, рр. 488–495. https://doi.org/10.1016/j.polymer.2006.11.044
12. Stepanov G. V., Borin D. Yu., Raikher Yu. L., Melenev P. V., Perov N. S. Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers. Journal of Physics: Condensed Matter., 2008, vol. 20, рр. 204121. https://doi.org/10.1088/0953-8984/20/20/204121
13. Böse H. Viscoelastic properties of silicone-based magnetorheological elastomers. International Journal of Modern Physics B, 2007, vol. 21, рр. 4790–4797. https://doi.org/10.1142/S0217979207045670
14. Nikitin L. V., Stepanov G. V., Mironova L. S., Gorbunov A.I. Magnetodeformational effect and effect of shape memory in magnetoelastics. J. Magn. Magn. Mater., 2004, vol. 272–276, рр. 2072–2073.
15. Melenev P. V., Kovrov V. N., Raikher Yu. L., Rusakov V. V., Stepanov G. V., Polygalova L. S., Kramarenko E. Y. Strukturno-mekhanicheskaya model' uprugoplasticheskogo povedeniya myagkikh magnitnykh elastomerov [Structural-mechanical model of elastic-plastic behavior of soft magnetic elastomers]. Vychislitel'naya mekhanika sploshnyh sred = Computational Continuum Mechanics. 2014, vol. 7, no. 4, pp. 423–433. https://doi.org/10.7242/1999-6691/2014.7.4.40
16. Stolbov O. V., Raikher Y. L. Mesostructural origin of the field-induced pseudo-plasticity effect in a soft magnetic elastomer. OP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 581, рр. 012003. https://doi.org/10.1088/1757-899X/581/1/012003
17. Stolbov O., Raikher Y. Field-induced pseudoplasticity of magnetoactive elastomers: a phase transition interpretation. IEEE Magnetics Letters, 2022, vol. 13, рр. 21408374. https://doi.org/10.1109/LMAG.2021.3127071
18. Lur'e A. I. Teoriya uprugosti [Theory of elasticity]. Moscow, Nauka Publ., 1970. 940 р.
19. Landau L. D., Lifshitz E. M. Teoriya uprugosti [Theory of elasticity]. Moscow, Nauka Publ., 1987. 248 р.
20. Stolbov O. V. Modelirovanie effekta razuprochneniya v magnitoaktivnykh elastomerakh [Simulation of the softening effect in мagnetoactive elastomers]. Vestnik Permskogo federal'nogo issledovatel'skogo tsentra = Bulletin of the Perm Federal Research Center, 2021, no. 3, pp. 13–16. https://doi.org/10.7242/2658-705X/2021.3.2
Review
For citations:
Stolbov O.V. Simulation of the Pseudoplasticity Effect in a Magnetoactive Elastomer under Compression and Tension. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(4):100-109. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-4-100-109