Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Production of Layered Composite Materials by Vacuum Forming Using a Robotic Technological System

https://doi.org/10.21869/2223-1528-2022-12-4-71-84.

Abstract

Purpose. Development of an automated device that provides the specified parameters of the technological process of forming layered composite materials. The main objective of this work was to study the drive of the mobile platform of the developed robotic system implemented on the basis of synchronized linear electric drives equipped with a position control system. 

Methodology. The research methods of the developed robotic system are based on obtaining dynamic parameters of the movement of the executive body and determining the forces and moments of the drives by conducting mathematical modeling of its movement. Taking into account the existing technologies for manufacturing parts from composite materials, it is necessary to develop a layout version of a robotic system for materials based on vacuum infusion, which provides molding of parts from a thermoplastic composite.  By setting the trajectory of the platforms, using differential equations and Coulomb dry friction models, it is necessary to obtain the laws of change in the output force of the drive and determine its technical parameters. 

Results. Using the developed models and setting the trajectory of the executive body, the law of change of the drive force and its mechanical power were obtained. The results of the study include the development of a methodology and an assessment of the parameters of the drive system and will be useful to developers of new mechatronic-type equipment for the manufacture of composite materials.

Conclusion. Modern composites, whose mechanical characteristics are superior to traditional materials, have significantly lower mass, which explains their widespread use in many industries. The developed method of creating an autonomous technological system makes it possible to significantly improve the quality of manufacturing the final product from composite material, through the use of a controlled mechatronic drive of a robotic system for vacuuming composites, providing a given law of motion of the working body.

About the Authors

E. N. Politov
Southwest State University
Russian Federation

Evgeny N. Politov, Cand. of Sci. (Engineering), Associate Professor of the Department of Mechanics, Mechatronics and Robotics

50 Let Oktyabrya Str. 94, Kursk 305040

Researcher ID: 176177 



A. N. Rukavitsyn
Southwest State University
Russian Federation

Alexander N. Rukavitsyn, Cand. of Sci.  (Engineering), Associate Professor of the Department of Mechanics, Mechatronics and Robotics

50 Let Oktyabrya Str. 94, Kursk 305040

Researcher ID: 423663



V. A. Polyakov
Southwest State University
Russian Federation

Vladislav А. Polyakov, Student of the Faculty  of Natural Sciences

50 Let Oktyabrya Str. 94, Kursk 305040



References

1. Grashchenkov D. V. Strategiya razvitiya nemetallicheskikh materialov, metalli-cheskikh kompozitsionnykh materialov i teplozashchity [Strategy of development of non-metallic materials, metal composite materials and thermal protection]. Aviatsionnye materialy i tekhnologii = Aviation materials and technologies, 2017, no. 5, pp. 264–271. https://doi.org/ 10.18577/2071-9140-2017-0-S-264-271

2. Gunyaeva A. G., Sidorina A. I., Kurnosov A. O. Polimernye kompozitsionnye materialy novogo pokoleniya na osnove svyazuyushchego VSE-1212 i napolnitelei, al'ternativnykh napolnitelyam firm Porcher Ind. i Toho Tenax [Polymer composite materials of a new generation based on the binder VSE1212 and fillers alternative to fillers from Porcher Ind. Toho and Tenax geogrids]. Aviatsionnye materialy i tekhnologii = Aviation materials and techno-logies, 2018, no. 3 (52), pp. 18–26. https://doi.org/ 10.18577/2071-9140-2018-0-3-18-26

3. Foliforov M. A., Yurmenev A. V., Frolov A. S., Aksenov A. S. [Application in 3D printing to create a body part from a composite material]. Additivnye tekhnologii: nastoyashchee i budushchee. Sbornik dokladov III Mezhdunarodnoi konferentsii [Additive technologies: present and future. Collection of reports at the III International Conference]. Moscow, VNIII aviatsionnykh materialov Publ., 2017, pp. 21. (In

4. Russ.)

5. Kartashov K. V. Tekhnologii 3D-pechati kompozitnymi materialami s primeneniem uglerodnogo volokna [3D printing technologies with composite materials using carbon fiber]. Nauchnyi Lider = Scientific Leader, 2022, no. 6 (51), pp. 135–137.

6. Sagalaev G. V., Abramov V. V., Kuleznev V. N., eds. Spravochnik po tekhnologii izdelii iz plastmass [Handbook of technology of plastic products]. Moscow, Khimiya Publ., 2000. 424 p.

7. Bortnikov V. G. Proizvodstvo izdelii iz plasticheskikh mass. T. 1: Teoreticheskie osnovy proektirovaniya izdelii, dizain i raschet na prochnost' [Production of plastic products. Vol. 1. Theoretical foundations of product design, design and strength calculation]. Kazan, Dom Pechati Publ., 2001. 246 p.

8. Arkhangelskaya M. A., Vermel V. D., Evdokimov Yu. Yu., etc. Korrektirovka upravlyayushchei programmy obrabotki formoobrazuyushchei osnastki dlya obespecheniya tochnosti izgotovleniya detalei iz polimernykh kompozitsionnykh materialov po rezul'tatam ikh izmerenii na koordinatno-izmeritel'noi mashine [Adjustment of the control program for processing forming equipment to ensure the accuracy of manufacturing parts from polymer composite materials based on the results of their measurements on a coordinate measuring machine]. Izvestiya Samarskogo nauchnogo tsentra RAN = Izvestya Samara Scientific Center of the Russian Academy of Sciences, 2016, vol. 18, no. 1(2), pp. 145–147.

9. Andreev Yu. S., Timofeeva O. S., Yablochnikov E. I. Proektirovanie i izgotovlenie formoobrazuyushchei osnastki v usloviyakh melkoseriinogo proizvodstva [Designing and manufacturing of forming equipment in conditions of small-scale production]. Izvestiya vuzov. Priborostroenie = Izvestya vuzov. Instrumentation, 2016, vol. 59, no. 7, pp. 592–599.

10. Yatsun S. F., Mishchenko V. Ya., Politov E. N. Kinematika, dinamika i prochnost' mashin, prochnost' mashin [Kinematics, dynamics and strength of machines, instruments and equipment]. Moscow, Alfa-M Publ., INFRA-M Publ., 2015. 207 p.

11. Rukavitsyn A. N., Efremov D. I. [Modeling of the motion of a mechanical system with two degrees of freedom in the package "MATLAB and/SIMMECHANICS"]. Molodezh' i nauka: Shag k uspekhu. Sbornik nauchnykh statei 4-i Vserossiiskii nauchnoi konferentsii perspektivnykh razrabotok molodykh uchenykh [Youth and Science: A step to success. Collection scienses articles of the 4th All-Russian Scientific Conference of promising developments of young scientists]; ed. by A. A. Gorokhov. Kursk, Universitetskaya kniga Publ., 2020, pp. 132–135. (In Russ.)

12.

13. ; 12(4

14. Политов Е. Н., Рукавицын А. Н., Поляков В. А. Получение слоистых композитных материалов …

15.

16. Rybak L. A., Mamaev Yu. A., Malyshev D. I., Virabyan L. G. Programmnyi modul' dlya realizatsii zadannoi traektorii dvizheniya vykhodnogo zvena robota-geksapoda dlya 3D-pechati izdelii [A software module for the implementation of a given trajectory of the output link of a hexapod robot for 3D printing of products]. Vestnik Belgorodskogo gosudarstvennogo tekhnicheskogo universiteta im. V. G. Shukhova = Bulletin of the Belgorod State Technical University V. G. Shukhov University, 2016, no. 8, pp. 155–165.

17. Pirogov D. A. [Composite materials based on woven materials of complex geometric shape]. Materialy Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii "Sostoyanie i perspektivy razvitiya elektro- i teplotekhnologii" (VIII Benardosovskie chteniya) [Benardos readings. Materials of the International Scientific and Technical Conference "The state and prospects of development of electrical and thermal technology" (VIII Benardos readings)]. Ivanovo, Ivanovo St. Power Engineering University named after

18. V. I. Lenin, 2015, vol. 3, pp. 21–23. (In Russ.)

19. Zimin D. E., Blaznov A. N. Fiziko-khimicheskie i reologicheskie osnovy sozdaniya polimernykh kompozitsionnykh materialov dlya izgotovleniya kompozitnykh ballonov na ikh osnove [Physico-chemical and rheological foundations of the creation of polymer composite materials for the manufacture of composite cylinders based on them]. Polzunovskii vestnik = Polzunovsky vestnik, 2018, no. 4, pp. 164–169.

20. Luzgarev S. V., Sheveleva E. N., Sheveleva Yu. A., Luzgarev A. S. [Obtaining composite glasssilicone electrical insulating material]. Sovremennaya nauka: novye podkhody i aktual'nye issledovaniya. Materialy Mezhdunarodnoi (zaochnoi) nauchno-prakticheskoi konferentsii [Modern science: new approaches and current research: collection of reports of the International (correspondence) scientific and practical conference]; ed. by A. I. Vostretsov. Moscow, Mir nauki Publ., 2020, pp. 74–77. (In Russ.)

21. Abdulkhakov K. A., Kotlyar V. M. K voprosu o polzuchesti polimernykh i kompozitnykh materialov [On the issue of creep of polymer and composite materials]. Vestnik Kazanskogo tekhnologicheskogo universiteta = Bulletin of Kazan Technological University, 2011, no. 8, pp. 102–107.

22. Valchuk N. A., Brovko O. S., Palamarchuk I. A., Boitsova T. A., Sysoeva N. V., Du A. V., Bogolitsyn K. G., Dubovy V. K., Kazakov Ya. V. [Properties and application of biopolymer films and composite membrane materials based on them]. Fizikokhimiya rastitel'nykh polimerov. Materaly VI Mezhdunarodnoi konferentsii [Physicochemistry of plant polymers. Collection of articles of the International Conference V]; ed. by K. G. Bogolitsin. Arhangelsk, Institute of Environmental Problems of the

23. North of the Ural Branch of the Russian Academy of Sciences, 2015, pp. 68–71. (In Russ.)

24. Parshin D. A. [Construction of a mathematical model of the process of thread winding of composite materials based on general approaches of mechanics of additive processes]. Aktual'nye problemy prikladnoi matematiki, informatiki i mekhaniki. Sbornik trudov Mezhdunarodnoi nauchnoi konferentsii [Actual problems of applied mathematics, computer science and mechanics. Proceedings of the International

25. Scientific Conference]. Voronezh, Nauchno-issledovatel'skie publikatsii, 2019, pp. 1216–1221. (In Russ.)

26. Gavrish V. M., Cherkashina N. I., Chaika T. V., Razina V. A., Tarasevich D. V. Raschetno-eksperimental'noe issledovanie kompozitnykh materialov dlya zashchity ot izlucheniya [Computational and experimental study of composite materials for radiation protection]. Energeticheskie ustanovki i tekhnologii = Power plants and technologies, 2019, vol. 5, no. 4, pp. 130–135.

27. Rakhmatullin I. I. [Сomposite materials in the automotive industry]. Kontseptsii ustoichivogo razvitiya nauki v sovremennykh usloviyakh: sbornik statei po itogam Mezhdunarodnoi nauchno-prakticheskoi konferentsii [Concepts of sustainable development of science in modern conditions. Collection of articles on the results of the International Scientific and Practical Conference]. Ufa, Agentstvo mezhdunarodnykh issledovanii Publ., 2018, vol. 2, pp. 199–201. (In Russ.)

28. Tanana V. P., Ershova A. A. O reshenii obratnoi kraevoi zadachi dlya kompozitsionnykh materialov [On solving the inverse boundary value problem for composite materials]. Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Komp'yuternye nauki = Bulletin of the Udmurt University. Mathematics. Mechanics. Computer science, 2018, no. 28, is. 4, pp. 474–488.


Review

For citations:


Politov E.N., Rukavitsyn A.N., Polyakov V.A. Production of Layered Composite Materials by Vacuum Forming Using a Robotic Technological System. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(4):71-84. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-4-71-84.

Views: 154


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)