Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Protective Properties of Ablated Cerium Oxide Nanoparticles for Cell Cultures under Conditions of Oxidative Stress under Ultraviolet and Ionizing Irradiation

https://doi.org/10.21869/2223-1528-2023-13-4-139-151

Abstract

Purpose. Study of the protective properties of ablated cerium oxide nanoparticles for cell cultures in an oxidative reaction under ultraviolet and ionizing irradiation.

Methods. Cerium dioxide nanoparticles with high antioxidant activity were obtained using laser ablation. Atomic force microscopy was used to characterize ablated cerium dioxide nanoparticles and cells incubated with cerium dioxide nanoparticles. The protective properties of cerium dioxide nanoparticles were studied after 0 (without incubation), 6and 24-hour incubation using the colorimetric MTT test method.

Results. Using laser ablation, cerium oxide nanoparticles with a maximum size of up to 50 nm were obtained. The resulting nanoparticles were incubated with BJ TERT cell lines for 6 and 24 hours. The samples were subjected to ultraviolet (UV) and ionizing irradiation in order to reveal the protective properties of CeO2 nanoparticles. Based on the results of the MTT test, it was found that incubation with cerium dioxide nanoparticles has a pronounced protective effect on the BJ TERT cell line. After UV irradiation, 6-hour and 24-hour incubation of cerium oxide nanoparticles with cell culture provides 15±5% and 20±5% more cell survival, respectively, than without particles. After ionizing radiation, the percentage of survival of cells incubated for 24 hours with cerium nanoparticles also increases by 20±5%.

Conclusion. This work shows that ablated cerium dioxide nanoparticles have a protective effect on healthy BJ TERT cells. The work shows that cerium oxide nanoparticles are promising antioxidants that can provide a protective effect for cell cultures from ultraviolet and ionizing radiation.

About the Authors

M. A. Pugachevskii
Southwest State University
Russian Federation

Maksim A. Pugachevskii, Doctor of Sciences (Physics and Mathematics), Professor at the Department of Nanotechnology, Microelectronics and Engineering Physics, Director of the Regional center of nanotechnology

50 Let Oktyabrya Str. 94, Kursk 305040



V. A. Mamontov
Southwest State University
Russian Federation

Vladimir A. Mamontov, Post-Graduate Student at the Department of Nanotechnology, Microelectronics and Engineering Physics

50 Let Oktyabrya Str. 94, Kursk 305040



A. A. Kryukov
Kursk State Medical University of the Ministry of Health of Russia
Russian Federation

Alexey A. Kryukov, Candidate of Sciences (Medi- cine), Associate Professor of the Department of Pathological Physiology, Head of the Laboratory of the Research Institute of Experimental Medicine

3 K. Marks Str., Kursk 305041



S. A. Dodonova
Kursk State Medical University of the Ministry of Health of Russia
Russian Federation

Svetlana A. Dodonova, Candidate of Sciences (Medicine), Assistant of the Department of Patho- logical Physiology, Deputy Dean of the Faculties of Dentistry, medical-Preventive Care and VSO, Research Assistant of the Research Institute of General Pathology

3 K. Marks Str., Kursk 305041



E. B. Artyushkova
Kursk State Medical University of the Ministry of Health of Russia
Russian Federation

Elena B. Artyushkova, Doctor of Sciences (Bio- logy), Associate Professor, Director of the Research Institute of Experimental Medicine, Professor of the Department of Pharmacology

3 K. Marks Str., Kursk 305041



V. A. Pikkiev
Southwest State University
Russian Federation

Valeryan A. Pikkiev, Candidate of Sciences (Enginering), Associate Professor of the Department of Computer Science

50 Let Oktyabrya Str. 94, Kursk 305040



References

1. Schmitt J., Haufe E. , Trautmann F., eds. Occupational UV-exposure is a major risk factor for basal cell carcinoma: results of the population-based case-control study FB-181. Journal of occupational and environmental medicine, 2018, vol. 60, no. 1, рр. 36–43. http://doi.org/10.1097/JOM.00000000000001217

2. Schmitt J., Haufe E., Trautmann F., eds. Is ultraviolet exposure acquired at work the most important risk factor for cutaneous squamous cell carcinoma? Results of the population‐based case–control study FB‐ 181. British Journal of Dermatology, 2018, vol. 178, no. 2, рр. 462–472. http://doi.org/10.1111/bjd.16286

3. Lopes J., Rodrigues C. M. P., Gaspar M. M., Pinto Reis C. Melanoma management: from epidemiology to treatment and latest advances. Cancers, 2022, vol. 14, no. 19, рр. 4652. http://doi.org/10.3390/cancers14194652

4. Li Y., Zhang X., Liu X., eds. Designing and engineering of nanocarriers for bioapplication in cancer immunotherapy. ACS Applied Bio Materials, 2020, vol. 3, no. 12, рр. 8321–8337. http://doi.org/10.1021/acsabm.0c01272

5. Rovisco A., Branquinho R., Deuermeier J., eds. Shape effect of zinc-tin oxide nanostructures on photodegradation of methylene blue and rhodamine B under UV and visible light. ACS Applied Nano Materials, 2021, vol. 4, no. 2, рр. 1149–1161. http://doi.org/10.1021/acsanm.0c02782

6. Rovisco A., Morais M., Branquinho R., eds. Microwave-assisted synthesis of Zn2SnO4 nanostructures for photodegradation of rhodamine b under UV and sunlight. Nanomaterials, 2022, vol. 12, no. 12, рр. 2119. http://doi.org/10.3390/nano12122119

7. Al-Mamun M. R. S., Kader B., Islamb M. S., Khan M. Z. H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 2019, vol. 7, no. 5, рр. 103248. http://doi.org/10.1016/j.jece.2019.103248

8. Tian L., Ke D., Hong Y. , eds. Artesunate treatment ameliorates ultraviolet irradiation-driven skin photoaging via increasing β-catenin expression. Aging (Albany NY), 2021, vol. 13, no. 23, рр. 25325. https://doi.org/10.18632/aging.203749

9. Cadet J., Douki T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochemical & Photobiological Sciences, 2018, vol. 17, no. 12, рр. 1816–1841. http://doi.org/10.1039/C7PP00395A

10. Sample A., He Y. Y. Mechanisms and prevention of UV‐induced melanoma. Photodermatology, photoimmunology & photomedicine, 2018, vol. 34, no. 1, рр. 13–24. http://doi.org/10.1111/phpp.12329

11. Vazirov R. A., Sokovnin S. Yur., Ilves V., eds. Physicochemical characterization and antioxidant properties of cerium oxide nanoparticles. Journal of Physics: Conference Series. 2018, vol. 1115, no. 3, рр. 032094. http://doi.org/10.1088/1742-6596/1115/3/032094

12. Filippi A., F. Liu, J. Wilson, eds. Antioxidant activity of cerium dioxide nanoparticles and nanorods in scavenging hydroxyl radicals. RSC advances, 2019, vol. 9, no. 20, рр. 11077–11081. http://doi.org/10.1039/C9RA00642G

13. Bedlovičová Z., Strapáč I., Baláž M., Salayová A. A brief overview on antioxidant activity determination of silver nanoparticles. Molecules, 2020, vol. 25, no. 14, рр. 3191. http://doi.org/10.3390/molecules25143191

14. Galatage S. T., Hebalkar A. S., Dhobale S. V., eds. Silver nanoparticles: properties, synthesis, characterization, applications and future trends. Silver micro-nanoparticles: properties, synthesis, characterization, and applications; ed. by S. Kumar, P. Kumar and C. Sh. Pathak. IntechOpen, 2021. URL: https://www.intechopen.com/chapters/77702. (accesssed 30.08.2023) http://doi.org/10.5772/intechopen.99173

15. Dao N. N., Luu M. , Nguyen Q. K. , Kim B. S. UV absorption by cerium oxide nanoparticles/epoxy composite thin films. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011, vol. 2, no. 4, рр. 045013. http://doi.org/10.1088/2043-6262/2/4/045013

16. Dhall A., Self W. Cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications. Antioxidants, 2018, vol. 7, no. 8, рр. 97. http://doi.org/10.3390/antiox7080097

17. Calvache-Muñoz J., Prado F. A., Tirado L., eds. Structural and optical properties of CeO2 nanoparticles synthesized by modified polymer complex method. Journal of Inorganic and Organometallic Polymers and Materials, 2019, vol. 29, рр. 813–826. http://doi.org/10.1007/s10904-018-01056-1

18. Garzon-Manjon A., Aranda-Ramos A., Melara-Benítez B., eds. Simple synthesis of biocompatible stable CeO2 nanoparticles as antioxidant agents. Bioconjugate Chemistry, 2018, vol. 29, no. 7, рр. 2325– 2331. http://doi.org/10.1021/acs.bioconjchem.8b00300

19. Reed K., Bush N., Burns Z., eds. Modeling the kinetic behavior of reactive oxygen species with cerium dioxide nanoparticles. Biomolecules, 2019, vol. 9, no. 9, рр. 447. http://doi.org/10.3390/biom9090447

20. Pugachevskii M. A., Mamontov V. A., Suy A. V., Kuzmenko A. P. Effect of pH on antioxidant properties of ablated CeO2 nanoparticles in photocatalytic process. Journal of Industrial and Engineering Chemistry, 2022, vol. 106, рр. 74–76. http://doi.org/10.1016/j.jiec.2021.10.036

21. Nyabadza A., Vazquez M., Brabazon D. A review of bimetallic and monometallic nanoparticle synthesis via laser ablation in liquid. Crystals, 2023, vol. 13, no. 2, рр. 253. http://doi.org/10.3390/cryst13020253

22. Khashan K. S., Ban A. Badr, Sulaiman G. , eds. Antibacterial activity of zinc oxide nanostructured materials synthesis by laser ablation method. Journal of Physics: Conference Series. 2021, vol. 1795, no. 1, рр. 012040. http://doi.org/10.1088/1742-6596/1795/1/012040

23. Pugachevskii M. A. Structural-defect formation in CeO2 nanoparticles upon laser ablation. Technical Physics Letters, 2017, vol. 43, рр. 698–700. http://doi.org/10.1134/S1063785017080120

24. Kochemirovskaya S. V., Novomlinsky M. O., Vogel A. A., Kochemirovsky V. A. Lazernyi sintez nanomaterialov dlya sozdaniya novogo semeistva elektrokhimicheskikh mikro-biosensorov [Laser synthesis of nanomaterials to create a new family of electrochemical microbiosensors]. Formaly farmatsii = Pharmacy Formulas, 2020, vol. 2, no. 3, рр. 74–88. http://doi.org/10.17816/phf41941/2713-153X-2020-3-2-74-88

25. Pugachevskii M. A., Mamontov V. A., Kuzmenko A. P., Chibisov A. N. Antioxidant properties of stabilized CeO2 nanoparticles. Physica Status Solidi (A), 2021, vol. 218, no. 20, рр. 2100355. http://doi.org/.1002/pssa.202100355

26. Pugachevsky M. A., Mamontov V. A., Kuzmenko A. P., Neruchev Yu. А. Issledovanie antioksidantnykh svoistv ablirovannykh nanochastits dioksida tseriya v okislitel'noi reaktsii Fentona [Investigation of the antioxidant properties of ablated cerium dioxide nanoparticles in the Fenton oxidative reaction]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2021, vol. 11, no. 1, рр. 61–74.

27. Ghasemi M., Turnbull T. , Sebastian S., Kempson I. The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. International journal of molecular sciences, 2021, vol. 22, no. 23. P. 12827. http://doi.org/10.3390/ijms222312827

28. Kim M., Osone S., Kim T., eds. Synthesis of nanoparticles by laser ablation: A review. KONA Powder and Particle Journal, 2017, vol. 34, рр. 80–90. http://doi.org/10.14356/kona.2017009

29. de Almeida M. S., Susnik E., Drasler B., eds. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chemical Society Reviews, 2021, vol. 50, no. 9, рр. 5397–5434. http://doi.org/10.1039/D0CS01127D

30. Pugachevskii M. A. Structural, electronic, and antioxidant properties of ablated CeО2 nanoparticles with controlled limiting size. Journal of Material Sciences & Engineering, 2021, vol. 10, no. 9. URL: https://www.hilarispublisher.com/open-access/structural-electronic-and-antioxidant-properties-of-ablatedceo2-nanoparticles-with-controlled-limiting-size.pdf. (accesssed 30.08.2023)

31. Mamontov V. A., Ryzhenkova A. Y., Pugachevskii M. A. Characterization of size and morphological composition of ablated nanoparticles of cerium dioxide after ultrasonic dispersion and centrifugation in aqueous solution. Journal of Physics: Conference Series. 2021, vol. 2064, no. 1, рр. 012083. http://doi.org/10.1088/1742-6596/2064/1/012083

32. Pugachevsky M. A., Mamontov V. A., Nei Win Aung, Chekadanov A. S., Kuzmenko A. P. Obtaining ablated CeO2 particles with a nanodispersed composition distribution. Letters to ZhTF, 2020, vol. 46, no. 20, рр. 38–41. http://doi.org/10.21883/PJTF.2020.20.50155.18286

33. Pustišek N., Šitum M. UV-radiation, apoptosis and skin. Collegium antropologicum, 2011, vol. 35, no. 2, рр. 339–341.


Review

For citations:


Pugachevskii M.A., Mamontov V.A., Kryukov A.A., Dodonova S.A., Artyushkova E.B., Pikkiev V.A. Protective Properties of Ablated Cerium Oxide Nanoparticles for Cell Cultures under Conditions of Oxidative Stress under Ultraviolet and Ionizing Irradiation. Proceedings of the Southwest State University. Series: Engineering and Technology. 2023;13(4):139-151. (In Russ.) https://doi.org/10.21869/2223-1528-2023-13-4-139-151

Views: 237


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)