Model of a Magnetoactive Elastomer with Structure Parameter
https://doi.org/10.21869/2223-1528-2023-13-4-75-87
Abstract
Purpose. To propose a simple and physically reasonable way to describe basic properties of magnetoactive elastomers under the action of magnetic field and/or mechanical loading.
Methods. A phenomenological approach is developed, in the framework of which the aggregation of ferroparticles in a magnetoactive elastomer is interpreted as the appearance of an order parameter whose physical meaning resembles, although does not coincide entirely with, the number of the particles dwelling in aggregates normalized by the total number of the particles. The corresponding functional contribution to the free energy of the system is constructed in the form similar to that of the Landau-de Gennes expansion, as it is used in the theory of phase transitions. Depending on the presence of the cubic term in this expansion, the transition may develop along the scenarios of either I or II order.
Results. In a model 1D calculation it is shown that the dependences of the main characteristics of the composite, viz. magnetization and deformation, on the applied field and mechanical load, might be in a unified manner described as being entailed by the evolution of the above-introduced order parameter. A specific feature manifested by the model system is its ability to display quasi-plastic response that exists as long as the external field is on, and to get back to elastic behavior as soon as the field is switched off.
Conclusions. The results obtained are found to be in good agreement with the data obtained from the direct numerical modelling of the mesoscopic variant of the considered problem. In qualitative aspect, the discovered specific features of the rheological bahavior closely resemble the results of experimental studies om mechanical loading of magnetoactive composites consisting of a silicone rubber filled with micron-size particles of carbonyl iron.
Keywords
About the Authors
O. V. StolbovRussian Federation
Oleg V. Stolbov, Candidate of Sciences (Physics and Mathematics), Senior Researcher at the Laboratory of Disperse Systems Dynamics
1 Academika Koroleva Str., Perm 614018
Yu. L. Raikher
Russian Federation
Yuriy L. Raikher, Doctor of Sciences (Physics and Mathematics), Chief Researcher at the Labora- tory of Dynamics of Disperse Systems
1 Academika Koroleva Str., Perm 614018
References
1. Alapan Y., Karacakol A. C., Guzelhan S. N., Isik I., Sitti M. Reprogrammable shape morphing of magnetic soft machines. Science Advances, 2020, vol. 6, art. no. eabc6414. https://doi.org/10.1126/sciadv.abc6414
2. Morillas J. R., de Vicente J. Magnetorheology: A review. Soft Matter., 2020, vol. 16, рр. 9614– 9642. https://doi.org/10.1039/d0sm01082k
3. Samal S., Škodová M., Abate L., Blanco I. Magneto-rheological elastomer composites. A review. Applied Science, 2020, vol. 10, art. no. 4899. https://doi.org/10.3390/app10144899
4. Zhalmuratova D., Chung H.-J. Reinforced gels and elastomers for biomedical and soft robotics applications. ACS Applied Polymer Materials, 2020, vol. 2, рр. 1073–1091. https://doi.org/10.1021/acsapm.9b01078
5. Sun S., Yang J., Du H., Zhang S., Yan T., Nakano M., Li W. Development of magnetorheological elastomers–based tuned mass damper for building protection from seismic event. Journal of Intelligent Material Systems and Structures, 2018, vol. 22, рр. 1777–1789. https://doi.org/10.1177/1045389X17754265
6. Yu K., Fang N. X., Huang G., Wang Q. Magnetoactive acoustic metamaterials. Advanced Materials, 2018, vol. 30, art. no. 1706348. https://doi.org/10.1002/adma.201706348
7. Behrooz M., Gordaninejad F. A flexible micro fluid transport system featuring magnetorheological elastomer. Smart Materials and Structures, 2016, vol. 26, art. no. 025011. https://doi.org/10.1088/0964-1726/25/2/025011
8. Kim Y., Parada G. A., Liu S., Zhao X. Ferromagnetic soft continuum robots. Science Advances, 2019, vol. 4, art. no. eaax7329. https://doi.org/10.1126/scirobotics.aax7329
9. Nikitin L. V., Stepanov G. V., Mironova L. S., Gorbunov A. I. Magnetodeformational effect and effect of shape memory in magnetoelastics. Journal of Magnetism and Magnetic Materials, 2004, vol. 272– 276, рр. 2072–2073. https://doi.org/10.1016/j.jmmm.2003.12.838
10. Stepanov G. V., Abramchuk S. S., Grishin D. A., Nikitin L. V., Kramarenko E. Y., Khokhlov A. R. Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers. Polymers, 2007, vol. 48, рр. 488–495. https://doi.org/10.1016/j.polymer.2006.11.044
11. Melenev P. V., Raikher Y. L., Rusakov V. V. Field-induced plasticity of soft magnetic elastomers. Journal of Physics: Conference Series, 2009, vol. 149, art. no. 012094. https://doi.org/10.1088/1742-6596/149/1/012094
12. Melenev P. V., Raikher Y. L., Rusakov V. V. Plasticity of soft magnetic elastomers. Polymer Science. Series A, 2010, vol. 52, рр. 430–435. https://doi.org/10.1134/S0965545X10040127
13. Melenev P. V., Raikher Y. L., Stepanov G. V., Rusakov V. V., Polygalova L. S. Modeling of the field-Induced plasticity of soft magnetic elastomers. Journal of Intelligent Material Systems and Structures, 2011, vol. 22, рр. 531–538. https://doi.org/10.1177/1045389X11403819
14. Vega J. Ch., Kaufhold T., Böhm V., Becker T., Zimmermann K., Martens M., Schilling M., Gundermann T., Odenbach S. Field-induced plasticity of magneto-sensitive elastomers in context with soft robotic gripper applications. Proceedings in Applied Mathematics and Mechanics, 2017, vol. 17, рр. 23– 26. https://doi.org/10.1002/pamm.201710007
15. Dzhezherya Yu I., Xu W., Cherepov S. V., Skirta Yu. B., Kalita V. M., Bodnaruk A. V., Liedienov N. A., Pashchenko A. V., Fesych I. V., Liu B., Levchenko G. G. Magnetoactive elastomer based on superparamagnetic nanoparticles with Curie point close to room temperature. Materials & Design, 2021, vol. 197, art. no. 109281. https://doi.org/10.1016/j.matdes.2020.109281
16. Lovšin M., Brandl D., Glavan G., Belyaeva I. A., Cmok L., Čoga L., Kalin M., Shamonin M., Drevenšek-Olenik I. Reconfigurable surface micropatterns based on the magnetic field-induced shape memory effect in magnetoactive elastomers. Polymers, 2021, vol. 13, art. no. 4422. https://doi.org/10.3390/polym13244422
17. Bozort R. M. Ferromagnetism. New York: Wiley-IEEE Press, 1993.
18. de Gennes P. G. The Physics of Liquid Crystals. Oxford, Clarendon Press,1974.
19. Shliomis M. I., Raikher Yu. L. Orientation ordering and the mechanical properties of solid polymers. Soviet Physics JETP, 1978, vol. 47, рр. 918–931.
20. Stolbov O. V., Raikher Y. L. Mesostructural origin of the field-induced pseudoplasticity effect in a soft magnetic elastomer. IOP Conference Series: Materials Science and Engineering, 2019, vol. 581, art. no. 012003. https://doi.org/10.1088/1757-899X/581/1/012003
Review
For citations:
Stolbov O.V., Raikher Yu.L. Model of a Magnetoactive Elastomer with Structure Parameter. Proceedings of the Southwest State University. Series: Engineering and Technology. 2023;13(4):75-87. (In Russ.) https://doi.org/10.21869/2223-1528-2023-13-4-75-87