Determination of Mass and Quantitative Productivity of the Process of Electrodispersion of Nickel Waste in Isopropyl Alcohol
https://doi.org/10.21869/2223-1528-2023-13-4-43-53
Abstract
The purpose of this study was to obtain electroerosive dispersed nickel by processing nickel waste by electrodispersing in isopropyl alcohol, as well as to study the performance of this process and the particle size of the obtained dispersed nickel.
Methods. Nickel waste in the form of plates was processed into powder by electrodispersion at an experimental electroerosive dispersion plant (RF Patent No. 2449859) in an isopropyl alcohol medium. The study of the average particle size of the obtained electroerosive dispersed nickel was carried out using a laser particle size analyzer "Analysette 22 NanoTec".
Results. For the first time, spherical nickel powders in the medium of isopropyl alcohol were obtained from industrial waste by the method of electroerosive dispersion. The parameters of the electroerosive dispersion unit necessary for the dispersion of nickel waste have been determined. A directly proportional dependence of the mass productivity of the process of electroerosion research of nickel waste dispersion on the voltage at the electrodes in isopropyl alcohol in the range of 120-220 V. has been experimentally established. The optimum for dispersing nickel waste in isopropyl alcohol is the voltage at the electrodes in the range of 200-220 V. It is established that the smallest particle size is nickel powder obtained at a voltage of 220 V at the electrodes, while the mass productivity at this value of the voltage at the electrodes is the maximum.
Conclusion. Based on the presented experimental studies of the mass and quantitative productivity of the process of electroerosive dispersion of nickel waste in isopropyl alcohol, a high efficiency of the use of electrodispersion technology for obtaining dispersed nickel powder, which is not inferior to industrially used powders in terms of average particle size, has been established. It has been experimentally established that the smallest particle size has a nickel powder obtained at a voltage of 220 V on the electrodes, while the mass productivity at this value of the voltage on the electrodes is maximum.
About the Authors
N. N. HoriakovaRussian Federation
Natalia М. Horiakova, Candidate of Sciences (Engineering), Associate Professor of the Department of Fundamental Chemistry and Chemical Technology
50 Let Oktyabrya Str. 94, Kursk 305040
E. V. Ageeva
Russian Federation
Ekaterina V. Ageeva, Doctor of Sciences (Engineering), Associate Professor, Associate Professor of the Department of Materials Technology and Transport
50 Let Oktyabrya Str. 94, Kursk 305040
K. V. Sadova
Russian Federation
Kristina V. Sadova, Undergraduate of the Department of Materials and Transport Technology
50 Let Oktyabrya Str. 94, Kursk 305040
N. S. Agarkov
Russian Federation
Nikita S. Agarkov, Undergraduate of the Department of Materials and Transport Technology
50 Let Oktyabrya Str. 94, Kursk 305040
References
1. Gadalov V. N., Filonovich A. V., Vornacheva I. V., Filatov E. A. Izuchenie poroshkov na osnove titana i nikelya [The study of powders based on titanium and nickel]. Elektroerozionnoe dispergirovanie. Vozmozhnost' kompaktirovaniya poroshkov na osnove titana i nikelya = Electroerosive dispersion. Possibility of compacting powders based on titanium and nickel. Saarbrucken, 2017. 121 р.
2. Lipkin M. S., Lipkin S. M., Gulyaev I. S., Moskalev Yu. G., Lipkin V. M., Kuznetsov D. N., Korbova E. V., Yatsenko A. N Vliyanie parametrov impul'snykh rezhimov polyarizatsii na granulometricheskii sostav poroshkov nikelya [Influence of parameters of pulsed polarization modes on the granulometric composition of nickel powders]. Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Tekhnicheskie nauki = Izvestia of higher educational institutions. The North Caucasus region. Technical sciences, 2022, no. 1 (213), рp. 37–42.
3. Gropyanov A. V., Sitov N. N., Zhukova M. N. Poroshkovye materialy [Powder materials]. St. Petersburg, SHTE SPbGUPTD Publ., 2017. 74 p.
4. Seregin P. S., Besedovsky S. G. Metody polucheniya nikelevogo poroshka [Methods of obtaining nickel powder]. Zapiski Gornogo instituta = Notes of the Mining Institute, 2005, pp. 154–156.
5. Wagner D. S. Poluchenie poroshka nikelya karbonil'nym sposobom [Obtaining nickel powder by carbonyl method]. Nauka. Tekhnologii. Innovatsii: sbornik statei po itogam Mezhdunarodnoi nauchnoprakticheskoi konferentsii [Nauka. Technologies. Innovations. Collection of articles on the results of the International Scientific and Practical Conference]. Ufa, Agentstvo mezhdunarodnykh issledovanii Publ., 2019, pp. 4–6.
6. Dzidziguri E. L., Kuznetsov D. V., Levina V. V., Sidorova E. N. Svoistva ul'tradispersnykh poroshkov metallov, poluchennykh khimicheskim dispergirovaniem [Properties of ultrafine metal powders obtained by chemical dispersion]. Perspektivnye materialy = Promising materials, 2000, no. 6, pp. 87–92.
7. Ageev E. V., Ageeva E. V., Horyakova N. M. Elektrokorund: sposoby polucheniya [Electrocorundum: methods of obtaining]. Kursk, Universitetskaya kniga Publ., 2022. 146 p.
8. Ageev E. V., Ageeva E. V., Horyakova N. M. Elektrokorund: primenenie v promyshlennosti [Electrocorundum: application in industry]. Kursk, Universitetskaya kniga Publ., 2022. 146 p.
9. Ageeva E. V., Horyakova N. M., Sysoev A. A. Elektroerozionnye poroshki stali marki 12Kh17, poluchennye v kerosine [Electroerosive powders of steel grade 12X17, obtained in kerosene]. Kursk, Universitetskaya kniga Publ., 2020. 166 p.
10. Ageeva E. V., Khoruakova N. M. Study of electrodeposited copper coatings obtained with the addition of electroerosion-copper nanoparticles [Study of electrodeposited copper coatings obtained with the addition of electroerosion-copper nanoparticles]. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques = Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021, vol. 15, no. 5, pp. 999–1003.
11. Ageeva E. V., Ageev E. V., Horyakova N. M., Sabelnikov B. N. Bezvol'framovye tverdye splavy na osnove elektroerozionnykh poroshkov karbonitrida titana [Tungsten–free hard alloys based on electroerosion powders of titanium carbonitride]. Kursk, Universitetskaya kniga Publ., 2021. 212 p.
12. Ageev E. V., Horyakova N. M. Psevdosplavy VNZh: poluchenie, primenenie, pererabotka [Pseudo-alloys of residence permit: obtaining, application, processing]. Kursk, Universitetskaya kniga Publ., 2020. 176 p.
13. Ageev E. V., Ageeva E. V., Horyakova N. M. Psevdosplavy VNZh na osnove elektroerozionnykh materialov [Pseudo-alloys of residence permit based on electroerosive materials]. Kursk, Universitetskaya kniga Publ., 2021. 240 p.
14. Ageev E. V., Ageeva E. V., Yemelyanov I. P., Horyakova N. M. Zharoprochnye nikelevye splavy ZhS6U: poluchenie, primenenie, pererabotka [Heat-resistant nickel alloys ZhS6U: production, application, processing]. Kursk, Universitetskaya kniga Publ., 2022. 235 p.
15. Horyakova N. M., Ageeva E. V., Sadova K. V. Fizicheskie i khimicheskie svoistva vtorichnoi poroshkovoi berillievoi bronzy BrB2, poluchennoi elektroeroziei v vode [Physical and chemical properties of secondary powder beryllium bronze BrB2 obtained by electroerosion in water]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2022, vol. 12, no. 3, pp. 8–22.
16. Ageev E. V., Ageev E. V., Horyakova N. M. Investigation of the elemental composition of the WNF-95 sintered powder alloy obtained by the electroerosive dispersion of waste in a carbon-containing liquid. IOP Conference Series: Materials Science and Engineering, 2020, vol. 1001, no. 012016. https://doi.org/10.1088/1757-899X/1001/1/012016
17. Ageev E. V., Horakova N. M., Pikalov S. V., Korolev M. S., Podanov V. O. Study of the fractional composition of electroerosive powder materials of the tungsten nickel iron alloy obtained in lighting kerosene. International Conference on Modern Trends in Manufacturing Technologies and Equipment: Mechanical Engineering and Materials Science (ICMTMTE 2020), 2020, vol. 329, pp. 02013.
18. Ageev E. V., Ageev E. V., Khoryakova N. M. X-Ray methods for studying the surface of powder obtained by electroerosion dispersion of the waste of W–Ni–Fe 95 pseudoalloy in kerosene. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021, vol. 15, no. 4, pp. 723–727.
19. Ageeva E. V. Horyakova N. M., Latypova G. R. Opredelenie optimal'nykh elektricheskikh parametrov ustanovki elektroerozionnogo dispergirovaniya dlya dispergirovaniya mednykh otkhodov v vode distillirovannoi postanovkoi faktornogo eksperimenta [Determination of optimal electrical parameters of an electroerosive dispersion unit for dispersing copper waste in distilled water by setting up a factor experiment]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2016, no. 6 (69), pp. 28–34.
20. Ageev E. V., Horyakova N. M., Malyukhov V. S. Poluchenie mednykh elektroerozionnykh nanoporoshkov iz otkhodov v srede kerosina [Obtaining copper electroerosive nanopowders from waste in kerosene]. Perspektivnye tekhnologii, oborudovanie i analiticheskie sistemy dlya materialovedeniya i nanomaterialov. Trudy XI Mezhdunarodnoi konferentsii [Promising technologies, equipment and analytical systems for materials science and nanomaterials. Proceedings of the XI International Conference]; ed. by L. V. Kozhitov. Kursk, Southwest St. Univ. Publ., 2014, pp. 85–91.
21. Ageev E. V., Semenikhin B. A., Latypov R. A., Anikanov V. I. Ustanovka dlya polucheniya nanodispersnykh poroshkov iz tokoprovodyashchikh materialov [Installation for the production of nanodisperse powders from conductive materials. Patent RF, no. 2449859, 2012.
Review
For citations:
Horiakova N.N., Ageeva E.V., Sadova K.V., Agarkov N.S. Determination of Mass and Quantitative Productivity of the Process of Electrodispersion of Nickel Waste in Isopropyl Alcohol. Proceedings of the Southwest State University. Series: Engineering and Technology. 2023;13(4):43-53. (In Russ.) https://doi.org/10.21869/2223-1528-2023-13-4-43-53