Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Modeling and Verification of Semi-Continuous Casting of Cylindrical Ingots from 1379c Alloy

https://doi.org/10.21869/2223-1528-2022-12-4-54-70.

Abstract

Purpose. The purpose of this study is a detailed study of temperature fields during the preparation of alloy 1379c, transportation of the melt through a tray system, filtration of the melt through a foam ceramic filter and casting of cylindrical ingots by computer modeling in the ESI ProCAST software package with verification of models on a laboratory installation of semi-continuous casting of aluminum alloy ingots (UPNL).

Methods. The ProCAST software package was used for computer modeling. For physical modeling and verification of computer simulation results, a laboratory installation of semi-continuous casting of aluminum alloys (UPNL) was used. Ingots were obtained from alloy 1379c. The microstructure of the ingots obtained was evaluated by metallographic methods on an optical microscope using computer methods of quantitative metallography.

Results. The simulation of the process of semi-continuous casting of aluminum alloys at the site starting from the melt outlet from the melting furnace and ending with the crystallizer is carried out. As a result of metallographic study of the structure of the ingots obtained, it was determined that the average size of primary silicon crystals in ingots is 41 ±16 microns, while the size of small particles is 23 ±5 microns (30% fraction), the size of medium particles is 44 ±9 microns (56% fraction), the size of large particles is 69 ±9 microns (14%), the range of particle sizes in the ingot is 12-91 microns.

Conclusion. Dynamic models of melt overflow through a metallotract, melt filtration through a foam ceramic filter have been developed. Modeling of ingot casting with subsequent verification and correction of models based on the results of laboratory experiments allowed us to choose the optimal mode of ingot casting, to obtain in ingots the size of primary silicon crystals less than 25 microns and to achieve the accuracy of the simulation results of more than 93%.

About the Authors

A. I. Bezrukikh
Siberian Federal University
Russian Federation

Alexander I. Bezrukikh, Cand. of Sci. (Engineering), Associate Professor, Associate Professor  of the Department of General Metallurgy, Institute of Non-Ferrous Metals and Materials Science

79 Svobodny Ave., Krasnoyarsk 660041



A. A. Ilyin
Siberian Federal University
Russian Federation

Alexey A. Ilyin, Junior Researcher, Institute of Non-Ferrous Metals and Materials Science

79 Svobodny Ave., Krasnoyarsk 660041



N. A. Stepanenko
Siberian Federal University
Russian Federation

Nikita A. Stepanenko, Engineer of the Foundry Department, Institute of Non-Ferrous Metals and Materials Science

79 Svobodny Ave., Krasnoyarsk 660041



Yu.  V. Baykovsky
Siberian Federal University
Russian Federation

Yuri V. Baykovsky, Post-Graduate Student  of the Department "Metal Processing by Pressure", Institute of Non-Ferrous Metals and Materials Science

79 Svobodny Ave., Krasnoyarsk 660041



References

1. Konkevich V. Yu., Lebedeva T. I., Taranukha G. V. Bystrozakristallizovannyi splav na osnove alyuminiya dlya izgotovleniya porshnei [Bystrozakri became an aluminum-based alloy for the manufacture of pistons]. Patent RF, no. 2468105, 2012.

2. Bezrukikh A. I., Baranov V. N., Konstantinov I. L., Sidelnikov S. B., Iliin A. A., Zavizin A. V., Bondarenko D. N., Kulikov B. P., Yuryev P. O., Voroshilov D. S., Baykovskiy Y. V., Partyko E. G. Modeling of casting technology of large-sized ingots from deformable aluminum alloys. International Journal of Advanced Manufacturing Technology, 2022, vol. 120(1-2), pp. 761–780. https://doi.org10.1007/s00170022-08817-w

3. Yashin V. V., Aryshenskiy V. Yu., Latushkin I. A., Tepterev M. S. Obosnovanie tekhnologii izgotovleniya ploskogo prokata iz alyuminievykh splavov sistemy Al – Mg – Sc dlya aerokosmicheskoi promyshlennosti [Substantiation of a manufacturing technology of flat rolled products from Al – Mg – Sc based alloys for the aerospace industry]. Tsvetnye Metally = Non-ferrous metal Jornal, 2018, vol. 7, pp. 75–82. https://doi.org/10.17580/tsm.2018.07.12

4. Konstantinov I. L., Baranov V. N., Sidelnikov S. B., Kulikov B. P., Bezrukikh A. I., Frolov V. F., Orelkina T. A., Voroshilov D. S., Yuryev P. O., Belokonova I. N. Investigation of the structure and properties of cold-rolled strips from experimental alloy 1580 with a reduced scandium content. International Journal of Advanced Manufacturing Technology, 2020, vol. 109(1–2), pp. 443–450. https://doi.org/10.1007/s00170-020-05681-4

5. Konstantinov I. L., Baranov V. N., Sidelnikov S. B., Arnautov A. D., Voroshilov D. S., Dovzen- ko N. N., Zenkin E. Y., Bezrukikh A. I., Dovzenko I. N., Yuryev P. O. Investigation of cold rolling modes of 1580 alloy by the method of computer simulation. International Journal of Advanced Manufacturing Technology, 2021, vol. 112(7), pp. 1965–1972. https://doi.org/10.1007/s00170-020-06570-6

6. Mann V. Kh., Sidelnikov S. B., Konstantinov I. L., Baranov V. N., Dovzhenko I. N., Voroshi- lov D. S., Lopatina E. S., Yakivyuk O. V., Belokonova I. N., Modeling and investigation of the process of hot Rolling of large-sized ingots from aluminum alloy of the Al-Mg system. Economically Alloyed by Scandium. Materials Science Forum, 2019, vol. 943, pp. 58–65. https://doi.org/10.4028/www.scientific.net/MSF.943.58

7. Baranov V., Sidelnikov S., Voroshilov D., Yakivyuk O., Konstantinov I., Sokolov R., Belokonova I., Zenkin E., Frolov V. Study of strength properties of semi-finished products from economically alloyed high-strength aluminium-scandium alloys for application in automobile transport and shipbuilding. Open Engineering, 2018, vol. 8(1), pp. 69–76. https://doi.org/10.1515/eng-2018-0005

8. Zakharov V. V., Filatov Y. A., Fisenko I. A. Scandium alloying of aluminum alloys. Metal Science and Heat Treatment, 2020, vol. 62, pp. 518–523. https://doi.org/10.1007/s11041-020-00595-0

9. Baranov V. N., Sidelnikov S. B., Zenkin E. Yu., Konstantinov I. L., Lopatina E. S., Yakivyuk O. V., Voroshilov D. S., Belokonova I. N., Frolov V. A. Study on the influence of heat treatment modes on mechanical and corrosion properties of rolled sheet products from a new aluminum alloy, economically alloyed with scandium. Vestnik of Nosov Magnitogorsk State Technical University, 2019, vol. 17(1), pp. 76–81. https://doi.org/10.18503/1995-2732-2019-17-1-76-81

10. Baranov V. N., Sidelnikov S. B., Bezrukikh, A. I., Zenkin E. Yu. Issledovanie rezhimov prokatki i mekhanicheskikh svoistv kholodnokatanykh, otozhzhennykh i svarnykh polufabrikatov iz opytnykh splavov sistemy Al – Mg, ekonomnolegirovannykh skandiem [Research of rolling regimes and mechanical properties of cold-rolled, annealed and welded semi-finished products from experimental alloys of Al-Mg system, economically alloyed by scandium]. Tsvetnye Metally = Non-Ferrous Metal Journal, 2017, vol. 9, pp. 91–96. https://doi.org/10.17580/tsm.2017.09.13.

11. Konstantinov I. L., Baranov V. N., Sidelnikov S. B., Zenkin E. Yu., Yuryev P. O., Belokonova I. N. Influence of rolling and annealing modes on properties of sheet semifinished products made of wrought aluminum alloy 1580. Russian Journal of Non-Ferrous Metals, 2020, vol. 61, pp. 641–645. https://doi.org/10.3103/S1067821220060115

12. Sidelnikov S. B., Baranov V. N., Konstantinov I. L., Zenkin E. Yu., Lopatina E. S., Bezru- kikh A. I., Voroshilov D. S., Yuryev P. O., Mansurov Yu. N., Voroshilova M. V., Belokonova I. N., Galiev R. I. Investigation of rolling modes, structure and properties of aluminum-magnesium alloy plates with a reduced scandium content. The International Journal of Advanced Manufacturing Technology, 2022, vol. 121(1–2), pp. 1373–1384. https://doi.org/10.1007/s00170-022-09403-w

13. Yashin V. V., Rushchits S. V., Aryshenskii E. V., Latushkin I. A. Reologicheskie svoistva deformiruemykh alyuminievykh splavov 01570 i AA5182 v usloviyakh goryachei deformatsii [Rheological behavior of 01570 and AA5182 wrought aluminum alloys under hot deformation conditions]. Tsvetnye Metally = Non-Ferrous Metals Journal, 2019, vol. 3, pp. 64–69. https://doi.org/10.17580/tsm.2019.03.09

14. Dovzhenko N. N., Rushchits S. V., Dovzhenko I. N., Sidelnikov S. B., Voroshi-lov D. S., Demchenko A. I., Baranov V. N., Bezrukikh A. I., Yuryev P. O. Deformation behavior during hot processing of the alloy of the Al-Mg system economically doped with scandium. International Journal of Advanced Manufacturing Technology, 2021, vol. 115, pp. 2571–2579. https://doi.org/10.1007/s00170-021-07338-2

15. Dovzhenko N. N., Rushchits S. V., Dovzhenko I. N., Yurev P. O. Issledovanie deformatsionnogo povedeniya alyuminievogo splava R-1580, ekonomnolegirovannogo skandiem, pri goryachei deformatsii [Understanding the behavior of aluminum alloy P-1580 sparingly doped with scandium under hot deformation]. Tsvetnye Metally = Non-Ferrous Metal Jornal, 2019, vol. 9, рр. 80–86. https://doi.org/10.17580/tsm.2019.09.13.

16. Napalkov V. I., Baranov V. N., Frolov V. F., Bezrukikh A. I. Plavlenie i lit'e alyuminievykh splavov [Melting and casting of aluminum alloys]. Krasnoyarsk, Sib. Feder. Univ. Publ., 2020. 714 p.

17. Kurdyumov A. V., Belov V. D., Pikunov M. V., eds. Proizvodstvo otlivok iz splavov tsvetnykh metallov [Production of castings from non-ferrous alloys]. Moscow, MISiS Publ., 2011. 614 p.

18. Liu Chao. Ceramic fibre thermal-insulating boara and making method thereof. Patent CN, no. CN1186286C, 2005.

19. Bochvar S. G., Predko P. Y., Konkevich V. Y., Gnevashev D. A. Novaya tekhnologiya polucheniya materialov s nizkim koeffitsientom lineinogo rasshireniya kak razvitie printsipa dostatochnosti [A new technology for obtaining materials with a low coefficient of linear expansion as the development of the sufficiency principl]. Tekhnologiya legkikh splavov = Technology of light alloys, 2020, no. 1, pp. 55– 61.

20. Zaderey A. G. O novatsiyakh OAO "VILS" v proizvodstve novykh materialov [About the innovations of JSC "VILS" in the production of new materials]. Tekhnologiya legkikh splavov = Technology of light alloys, 2016, no. 1, pp. 7–42.

21. Konkevich V. Yu., Lebedeva T. I., Shadaev D. A., Predko P. Yu., Bochvar S. G., Taranukha G. V., Kunyavskaya T. M., Kuznetsov A. O., Nilov E. E. Sposob izgotovleniya porshnevoi zagotovki iz zaevtekticheskogo silumina [The method of manufacturing a piston billet from transeutectic silumin]. Patent RF, no. 2613498, 2017.

22. Shadaev D. A., Predko P. Yu., Lebedeva T. I., eds. Vliyanie osobennostei tekhnologii plavleniya na sostav i morfologiyu faz zaevtekticheskikh siluminov [The influence of melting technology features on the composition and morphology of the phases of transeutectic silumins]. Tekhnologiya legkikh splavov = Technology of light alloys, 2015, no. 2, pp. 105–111.


Review

For citations:


Bezrukikh A.I., Ilyin A.A., Stepanenko N.A., Baykovsky Yu.V. Modeling and Verification of Semi-Continuous Casting of Cylindrical Ingots from 1379c Alloy. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(4):54-70. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-4-54-70.

Views: 130


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)