Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

X-ray Fluorescence Analysis of the Elemental Composition of Tungsten, Nickel and Copper

https://doi.org/10.21869/2223-1528-2023-13-4-20-31

Abstract

The purpose of this work was to conduct an X-ray fluorescence analysis of the elemental composition of tungsten, nickel and copper metal waste using an Olympus Delta portable spectrometer.

Methods. To determine the chemical composition of raw materials, samples of metal waste in the form of copper rods, tungsten rods of various diameters and scraps of nickel plates intended for recycling were examined. To determine the elemental composition of metal waste, the method of X-ray fluorescence analysis (XFA) was chosen. The X-ray fluorescence method is based on the ratio of the intensity of X-ray fluorescence to the concentration of elements in the sample. Samples irradiated with powerful X-ray tube radiation, in response, emit characteristic fluorescent radiation of atoms proportional to their concentration in the sample. This method allows us to qualitatively assess the elemental composition of complex samples without violating their physico-chemical properties with minimal time costs. The Olympus Delta spectrometer was used as an express analyzer of metals and alloys, with the help of which experimental data on the composition of metal waste of tungsten, nickel and copper were obtained.

Results. Based on the conducted studies aimed at X-ray fluorescence analysis of the elemental composition of tungsten, nickel and copper metal waste using the Olympus Delta portable spectrometer, it was found that the samples of the studied metal waste correspond to the following grades of alloys: tungsten rod made of tungsten grade VA; nickel plate made of nickel grade PNK-0T1; copper rod made of copper grade M3r.

Conclusion. The results obtained will allow further research on their processing by the method of electroerosive dispersion and reuse in the production of heavy tungsten alloys. Renovation of metal waste, including tungsten, nickel and copper metal waste, will contribute to resource conservation, import substitution and ensuring the technological sovereignty of the Russian Federation.

About the Authors

E. V. Ageevа
Southwest State University
Russian Federation

Ekaterina V. Ageeva, Doctor of Sciences (Engi- neering), Associate Professor, Professor of the Department of Materials Technology and Transport

50 Let Oktyabrya Str. 94, Kursk 305040



O. G. Loktionova
Southwest State University
Russian Federation

Oksana G. Loktionova, Doctor of Sciences (Engineering), Professor, Vice-Rector for Academic Affairs

50 Let Oktyabrya Str. 94, Kursk 305040



D. A. Ulitin
Southwest State University
Russian Federation

Dmitry A. Ulitin, Post-Graduate Student of the Department of Technology of Materials and Transport 

50 Let Oktyabrya Str. 94, Kursk 305040



References

1. Chuvildeev V. N., Nokhrin A. V., Baranov G. V., Moskvicheva A. V., Boldin M. S., Kotkov D. N., Sakharov N. V., Blagoveshchenskiy Yu. V., Shotin S. V., Melekhin N. V., Belov V. Yu. Issledovanie struktury i mekhanicheskikh svoistv nano i ul'tradispersnykh mekhano-aktivirovannykh tyazhelykh vol'framovykh splavov [Investigation of the structure and mechanical properties of nano and ultrafine mechanoactivated heavy tungsten alloys]. Rossiiskie nanotekhnologii = Russian nanotechnologies, 2013, vol. 8, no. 1-2, pp. 94–104.

2. Chuvildeev V. N., Moskvicheva A. V., Nokhrin A. V., Baranov G. V., Kotkov D. N., Blagoveshchenskiy Yu. V., Lopatin Yu. G., Belov V. Yu. Sverkhprochnye nanodispersnye vol'framovye psevdosplavy, poluchennye metodami vysokoenergeticheskoi mekhanoaktivatsii i elektroimpul'snogo plazmennogo spekaniya [Heavy-duty nanodisperse tungsten pseudo-alloys obtained by methods of high-energy mechanical activation and electric pulse plasma sintering]. Doklady Akademii nauk = Reports of the Academy of Sciences, 2011, vol. 436, no. 4, pp. 478–482.

3. Rovin S. L., Kalinichenko A. S., Rovin L. E. Vozvrashchenie dispersnykh metallootkhodov v proizvodstvo [The return of dispersed metal waste to production]. Lit'e i metallurgiya = Casting and metallurgy, 2019, no. 1, pp. 45–48.

4. Tatarkin A. I., Romanova O. A., Dyubanov V. G., Dushin A. V., Bryantseva O. S. Tendentsii i perspektivy razvitiya retsiklinga metallov [Trends and prospects of metal recycling development]. Ekologiya i promyshlennost' Rossii = Ecology and industry of Russia, 2013, no. 5, pp. 4–10.

5. Jandieri G. V. Diagnostika effektivnosti i optimizatsiya organizatsionno-ekonomicheskoi sistemy retsiklinga chernykh metallov [Diagnostics of efficiency and optimization of the organizational and economic system of recycling of ferrous metals]. Chernye metally = Ferrous metals, 2020, no. 1, pp. 56–62.

6. Pisareva O. M. Otsenka perspektiv razvitiya natsional'noi sistemy retsiklinga metallov na osnove stsenarnogo modelirovaniya [Assessment of the prospects for the development of the national metal recycling system based on scenario modeling]. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Ekonomicheskie nauki = Scientific and Technical Bulletin of St. Petersburg State Polytechnic University. Economic sciences, 2014, no. 3 (197), pp. 75–89.

7. Ageev E. V., Latypova G. R., Davydov A. A., Ageeva E. V. Provedenie rentgenospektral'nogo mikroanaliza tverdosplavnykh elektroerozionnykh poroshkov [Conducting X-ray spectral microanalysis of carbide electroerosion powders]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University. 2012, no. 5 (44), pt. 2, pp. 99–102.

8. Ageev E. V., Gadalov V. N., Ageeva E. V., Bobryshev R. V. Poroshki, poluchennye elektroerozionnym dispergirovaniem otkhodov tverdykh splavov - perspektivnyi material dlya vosstanovleniya detalei avtotraktornoi tekhniki [Powders obtained by electroerosive dispersion of solid alloy waste - a promising material for the restoration of parts of automotive equipment]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2012, no. 1-1 (40), pp. 182–189.

9. Ageev E. V., Latypova G. R., Davydov A. A., Ageeva E. V. Otsenka effektivnosti primeneniya tverdosplavnykh elektroerozionnykh poroshkov v kachestve elektrodnogo materiala [Evaluation of the effectiveness of the use of carbide electroerosion powders as an electrode material]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Series: Engineering and Technology, 2012, no. 1, pp. 19–22.

10. Ageev E. V., Semenikhin B. A., Ageeva E. V., Latypov R. A. Issledovanie khimicheskogo sostava poroshkov, poluchennykh elektroerozionnym dispergirovaniem tverdogo splava [Investigation of the chemical composition of powders obtained by electroerosive dispersion of a hard alloy]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2011, no. 5 (38), pt. 1, pp. 138a–144.

11. Ageeva E. V., Ageev E. V., Pikalov S. V. Rentgenospektral'nyi mikroanaliz tyazhelykh vol'framovykh psevdosplavov na osnove dispergirovannykh elektroeroziei chastits splava VNZh, poluchennykh v vode [X-ray spectral microanalysis of heavy tungsten pseudoalloys based on electroerosion dispersed particles of a residence permit alloy obtained in water]. Sovremennye problemy mashinostroeniya. Sbornik trudov XIII Mezhdunarodnoi nauchno-tekhnicheskoi konferentsi [Modern problems of mechanical engineering. Proceedings of the XIII International Scientific and Technical Conference]. Tomsk, Tomsk Polytechnic Univ. Publ., 2020, pp. 149–150.

12. Ageev E. V., Pikalov S. V., Pereverzev A. S., Sysoev A. A., Sabelnikov B. N. Razmer zerna tyazhelykh vol'framovykh splavov, poluchennykh na osnove poroshkovykh materialov, izgotovlennykh elektrodispergirovaniem splava VNZh 95 v kerosine [Grain size of heavy tungsten alloys obtained on the basis of powder materials made by electrodispersing the alloy VJ 95 in kerosene]. Shkola molodykh novatorov: Sbornik nauchnykh statei 2-i Mezhdunarodnoi nauchnoi konferentsii perspektivnykh razrabotok molodykh uchenykh [School of Young innovators. Collection of scientific articles of the 2nd International Scientific Conference of promising developments of young scientists]. Kursk, Universitetskaya kniga Publ., 2021, vol. 3, pp. 76–78.

13. Povarova K. B., Alymov M. I., Drozdov A. A. Tyazhelye vol'framovye splavy na osnove nanoporoshkov [Heavy tungsten alloys based on nanopowders]. Voprosy materialovedeniya = Questions of materials science, 2008, no. 2 (54), pp. 94–99.

14. Ageeva E. V., Selyutin V. L., Andreeva L. P. Issledovanie vliyaniya parametrov elektroerozionnogo dispergirovaniya splava VNZh na srednii razmer poluchaemykh chastits [Investigation of the influence of the parameters of the electroerosive dispersion of a residence permit alloy on the average size of the resulting particles]. Elektrometallurgiya = Electrometallurgy, 2020, no. 6, pp. 32–40.

15. Nartsev V. M., Atkarskaya A. B. Rentgenofluorestsentnyi analiz sostava tonkikh pokrytii s ispol'zovaniem metoda fundamental'nykh parametrov [X-ray fluorescence analysis of the composition of thin coatings using the method of fundamental parameters]. Zavodskaya laboratoriya. Diagnostika materialov = Factory laboratory. Diagnostics of materials, 2016, no. 82(3), pp. 29–35.

16. Karolin E. A., Zhelonkin Ya. O., Oparin A. V., Vasiliev V. A., Akhmetova L. T., Badikova G. R. Rentgenofluorestsentnyi analiz kak metod opredeleniya kolichestvennogo elementnogo sostava splavnykh katalizatorov [X-ray fluorescence analysis as a method for determining the quantitative elemental composition of alloy catalysts]. Vestnik tekhnologicheskogo universiteta = Bulletin of the Technological University, 2016, vol. 19, no. 14, pp. 63–65.

17. Wählisch A., Streeck C., Hönicke P., Beckhoffa B. Validation of secondary fluorescence excitation in quantitative X-ray fluorescence analysis of thin alloy films. J. Anal. At. Spectrom., 2020, vol. 35, pp. 1664–1670. https://pubs.rsc.org/en/content/articlelanding/2020/ja/d0ja00171f

18. Bakhtiarov A. V., Saveliev S. K. Metodika modifitsirovannogo sposoba standarta-fona pri rentgenofluorestsentnom analize slozhnykh mnogokomponentnykh ob"ektov [Methodology of the modified standard-background method for X-ray fluorescence analysis of complex multicomponent objects]. Zhurnal analiticheskoi khimii = Journal of Analytical Chemistry, 2020, vol. 75, no. 1, pp. 24–30.

19. Polyakova M. A., Baskova E. Yu. Osobennosti primeneniya rentgenofluorestsentnogo analiza dlya opredeleniya sostava materialov [Features of the use of X-ray fluorescence analysis to determine the composition of materials]. Tekhnologii metallurgii, mashinostroeniya i materialoobrabotki = Technologies of metallurgy, mechanical engineering and material processing, 2017, no. 16, pp. 92–98.

20. Volkov A. I., Osipov K. B., Zhdanov P. A., Seregin A. N., Bolshov M. A. Rentgenofluorestsentnyi analiz vanadievogo shlaka posle boratnogo splavleniya [X-ray fluorescence analysis of vanadium slag after borate fusion]. Zavodskaya laboratoriya. Diagnostika materialov = Industrial Laboratory. Diagnostics of Materials, 2016, vol. 82(1), pp. 8–15.


Review

For citations:


Ageevа E.V., Loktionova O.G., Ulitin D.A. X-ray Fluorescence Analysis of the Elemental Composition of Tungsten, Nickel and Copper. Proceedings of the Southwest State University. Series: Engineering and Technology. 2023;13(4):20-31. (In Russ.) https://doi.org/10.21869/2223-1528-2023-13-4-20-31

Views: 219


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)