Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Study of the Mechanisms of Hardening of the Obtained Composite Material Based on High Purity Aluminum, Hardened with SiO2 Nanoparticles, in the Field of Centrifugal Force of the Centrifuge

https://doi.org/10.21869/2223-1528-2022-12-4-22-39

Abstract

Purpose of research.  Production of new composite materials based on aluminum, reinforced with dispersed, highstrength, refractory SiO2 nanoparticles in the field of centrifugal forces of the centrifuge, as well as the study of the properties of the obtained composite materials and the mechanisms of their hardening.

Methods. As the matrix material, high purity cast aluminum corresponding to the A99 grade was used, which was strengthened with nanoparticles: SiO2 produced by Plasmotherm LLC, the average particle size is 15 nm. An elemental local analysis of the chemical composition was carried out using electronic Auger spectroscopy. The dislocation structure of CM reinforced with dispersed silicon dioxide nanoparticles and their distribution in the matrix material were studied using transmission electron microscopy. The nature of the fracture was studied using scanning electron microscopy. The hardness of specially prepared samples was determined by the Rockwell method. The bending strength was determined by the three-point bending method. Tests for heat resistance were carried out by the weight method. 

Results. In the process of crystallization in the field of centrifugal forces of the centrifuge, CM based on an aluminum matrix reinforced with dispersed nanoscale particles in an amount not exceeding 1% were obtained. During a series of mechanical tests, it was proved that with an increase in the gravitational coefficient and the concentration of the hardening phase, the physical and mechanical characteristics increase. Using a number of microstructural analyses, it was proved that silicon dioxide nanoparticles aggregate and form agglomerates ranging in size from 100–300 nm. The agglomerates formed during crystallization are germinal centers and are located inside the grains along the boundaries of the subgrains. 

Conclusion. Composite materials based on high purity aluminum corresponding to the A99 grade, reinforced with SiO2 nanoparticles, were obtained in the field of centrifugal force of the centrifuge with a gravitational coefficient equal to 121 and 164g. The influence of the nanoparticles used on the physico-mechanical and operational properties of the composite material is proved. A method of introducing strengthening nanoparticles in the form of pre–pressed briquettes - ligatures with a given content of the strengthening phase is proposed.

About the Authors

V. I. Kostikov
National Research University "MISIS"
Russian Federation

Valery I. Kostikov, Dr. of Sci. (Engineering), Professor, Corresponding Member of the Russian Academy of Sciences, Professor of the Department of Powder Metallurgy and Functional  Coatings

Leninsky Ave. 4, Moscow 119049



Zh. V. Eremeeva
National Research University "MISIS"
Russian Federation

Zhanna V. Eremeeva, Dr. of Sci. (Engineering), Professor, Professor of the Department of Powder Metallurgy and Functional Coatings

Leninsky Ave. 4, Moscow 119049



E. V. Ageev
Southwest State University
Russian Federation

Evgeny V. Ageev, Dr. of Sci. (Engineering), Professor, Professor of the Department of  Technology of Materials and Transport

50 Let Oktyabrya Str. 94, Kursk 305040



R. A. Skorikov
PJSC "Tupolev"
Russian Federation

Roman A. Skorikov, Cand. of Sci. (Engineering), Head of the Mechanical Testing and Technological Research Sector 

17 Akademician Tupolev Embankment, Moscow 105005



L. E. Agureev
JSC SSC "Keldysh Center"
Russian Federation

Leonid E. Agureev, Cand. of Sci. (Engineering), Senior Researcher

8 Onezhskaya Str., Moscow 125438



N. M. Nitkin
Moscow Polytechnic University
Russian Federation

Nikolay M. Nitkin,  Cand. of Sci. (Engineering), Associate Professor, Associate Professor of the Department of Materials Science

38 Bolshaya Semenovskaya Str., Moscow 107023



V. L. Orlov
Moscow Polytechnic University
Russian Federation

Vadim L. Orlov, Cand. of Sci. (Engineering), Senior Lecturer of the Department of Foreign Languages

38 Bolshaya Semenovskaya Str., Moscow 107023



References

1. Statsura V. V., Leonov V. V., Mamina L. I., Oborin L. A., Cherepanov A. I. Perspektivy sozdaniya liteinykh kompozitsionnykh materialov tipa A1·Al2O3·SiO2 [Prospects for the creation of foundry composite materials of type Al·Al2O3·SiО2]. Liteinoe proizvodstvo = Foundry production, 2003, no. 2, pp. 11– 12.

2. Uvarov V. V., Drozdov I. A. [On the use of alloying tablets in the smelting of aluminum alloys]. Sbornik nauchnykh trudov Vserossiiskogo soveshchaniya materialovedov [Collection of scientific tr. All-Russian Meeting of Materials scientists of Russia]. Ulyanovsk, UlSTU Publ., 2006, pp. 81–85. (In Russ.)

3. Chernyshova T. A., Bolotova L. K., Kalashnikov I. E., Kobeleva L. I., Bykov P. A. Vliyanie tugoplavkikh nanochastits na modifikatsiyu struktury metallomat-richnykh kompozitov [The influence of refractory nanoparticles on the modification of the structure of metal matrix composites]. Metally = Metals, 2007, no. 3, pp. 79–84.

4. Kennedy A. R., Wyatt S. M. Characterizing particle-matrix interfacial bonding in particle Al-TiC MMCs produced by different methods. Composites: Part A, 2001, vol. 32, рр. 555–559.

5. Chernyshova T. A., Kobeleva L. I., Lemesheva T. V. Dispersno-napolnennye kompozitsionnye materialy na baze antifriktsionnogo silumina dlya uzlov treniya skol'zheniya [Dispersed-filled composite materials based on antifriction silumin for sliding friction units]. Perspektivnye materialy = Promising materials, 2004, no. 3, pp. 69–75.

6. Boucher N. A., Mironov A. E., Markova T. F. Novye alyuminievye splavy vzamen traditsionnykh materialov [New aluminum alloys instead of traditional materials]. Privodnaya Tekhnika = Drive Technology, 2003, no. 5, pp. 57–62.

7. Kevorkijan V. Functionally graded aluminium-matrix composites. American Ceramic Society Bulletin, 2003, vol. 82, рр. 33–37.

8. Ageev E. V., Latypova G. R., Davydov A. A., Ageeva E. V. Otsenka effektivnosti primeneniya tverdosplavnykh elektroerozionnykh poroshkov v kachestve elektrodnogo materiala [Evaluation of the effectiveness of the use of carbide electroerosion powders as an electrode material]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technology, 2012, no. 1, pp. 19–22.

9. Ageev E. V., Latypova G. R., Davydov A. A., Ageeva E. V. Provedenie rentgenospektral'nogo mikroanaliza tverdosplavnykh elektroerozionnykh poroshkov [Conducting X-ray spectral microanalysis of carbide electroerosion powders]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2012, no. 5 (44), pt. 2, pp. 99–102.

10. Ageev E. V., Semenikhin B. A., Ageeva E. V., Latypov R. A. Issledovanie khimicheskogo sostava poroshkov, poluchennykh elektroerozionnym dispergirovaniem tverdogo splava [Investigation of the chemical composition of powders obtained by electroerosive dispersion of a hard alloy]. Izvestiya YugoZapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2011, no. 5(38), pt. 1, pp. 138a–144.

11. Ageeva E. V., Latypov R. A., Burak P. I., Ageev E. V. Poluchenie tverdosplavnykh izdelii kholodnym izostaticheskim pressovaniem elektroerozionnykh poroshkov i ikh issledovanie [Obtaining hardalloy products by cold isostatic pressing of electroerosive powders and their research]. Izvestiya Yugo- apadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2013, no. 5 (50), pp. 116–125.

12. Ageev E. V., Gadalov V. N., Ageeva E. V., Bobryshev R. V. Poroshki, poluchennye elektroerozionnym dispergirovaniem otkhodov tverdykh splavov – perspektivnyi material dlya vosstanovleniya detalei avtotraktornoi tekhniki [Powders obtained by electroerosive dispersion of solid alloy waste - a promising material for restoring parts of automotive equipment]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2012, no. 1 (40), pt. 1, pp. 182–189.

13. Yeremeeva Zh. V., Ageev E. V., Sharipzyanova G. H., Kaplansky Yu. Yu., Nitkin N. M., Akhmetov A. S., Orlov V. L., Saenko A. A. Issledovanie protsessa formovaniya i konsolidatsii zagotovok iz mekhano-sintezirovannykh poroshkov gafnatov evropiya i tseriya [Investigation of the process of forming and consolidating blanks from mechanosynthesized powders of europium and cerium hafnates]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2021, vol. 25, no. 3, pp. 8–26.

14. Aldazharov T. M., Rusin Yu. G., Eremeeva Zh. V., Ryspaev T. A., Ageev E. V. Metody podgotovki i poluchenie iskhodnykh materialov dlya prigotovleniya granul oksida gadoliniya dlya TVEL [Methods of preparation and preparation of raw materials for the preparation of gadolinium oxide granules for fuel rods]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2016, no. 4 (67), pp. 8–18.

15. Kostikov V. I., Eremeeva Zh. V., Slyuta D. A., Nitkin N. M., Ageev E. V., Sharipzyanova G. H. Khimicheskaya stoikost' v agressivnykh sredakh kompozitsionnogo materiala EPAN, uprochnennogo nanorazmernymi uglerodnymi voloknami [Chemical resistance in aggressive environments of EPAN composite material reinforced with nanoscale carbon fibers]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2014, no. 3 (54), pp. 134–140.

16. Eremeeva Zh. V., Myakisheva O. V., Panov V. S., Lopatin V. Yu., Ageev E. V., Lizunov A. V., Nepapushev A. A., Sidorenko D. A., Mishunin D. Yu., Apostolova E. V. Osobennosti SPS-spekaniya zagotovok poroshka iz karbida bora, poluchennogo razlichnymi metodami [Features of SPS-sintering of billets of boron carbide powder obtained by various methods]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2017, no. 3 (72), pp. 41–58.

17. Panov V. S., Eremeeva Zh. V., Ageev E. V., Myakisheva L. V., Lizunov A. A. Issledovanie protsessa polucheniya nanostrukturirovannogo titanata disproziya mekhanokhimicheskoi obrabotkoi oksidov titana i disproziya [Investigation of the process of obtaining nanostructured dysprosium titanate by mechanochemical treatment of titanium and dysprosium oxides]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2015, no. 5 (62), pp. 21–26.

18. Eremeeva Zh. V., Ageev E. V., Kaplansky Yu. Yu., Vorotylo S. A., Nepapushev A. A., Sidoren- ko D. A., Khvan A. V. Struktura i svoistva poroshka gafnata disproziya Dy2HFO5, poluchennogo mekhanokhimicheskim sposobom [Structure and properties of dysprosium Dy2HFO5 hafnate powder obtained by mechanochemical method]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technology, 2019, vol. 9, no. 3 (32), pp. 44–63.

19. Agureev L. E., Ivanov B. S., Kostikov V. I., Eremeeva Zh. V., Ageev E. V., Laptev I. N., Savushkina S. V., Rudstein R. I., Barmin A. A., Kanushkin A. I., Ashmarin A. A. Razrabotka alyumokompozitov, legirovannykh mikroporoshkami medi ili magniya, s malymi dobavkami oksidnykh nanochastits [Development of aluminum composites doped with micro-powders of copper or magnesium, with small additives of oxide nanoparticles]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technology, 2016, no. 3 (20), pp. 9–20.

20. Kostikov V. I., Lopatin V. Yu., Eremeeva Zh. V., Simonova E. V., Kaplansky Yu. Yu., Sharipzyanova G. H., Latypov R. A., Ageev E. V. Struktura i svoistva alyumomatrichnykh kompozitsionnykh materialov, poluchennykh v nestatsionarnom silovom pole i uprochnennykh nanorazmernymi dobavkami [Structure and properties of aluminum-matrix composite materials obtained in a nonstationary force field and hardened with nanoscale additives]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technology, 2014, no. 1, pp. 52–60.


Review

For citations:


Kostikov V.I., Eremeeva Zh.V., Ageev E.V., Skorikov R.A., Agureev L.E., Nitkin N.M., Orlov V.L. Study of the Mechanisms of Hardening of the Obtained Composite Material Based on High Purity Aluminum, Hardened with SiO2 Nanoparticles, in the Field of Centrifugal Force of the Centrifuge. Proceedings of the Southwest State University. Series: Engineering and Technology. 2022;12(4):22-39. (In Russ.) https://doi.org/10.21869/2223-1528-2022-12-4-22-39

Views: 211


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)